BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 12226075)

  • 1. Identification of a tyrosine in the agonist binding site of the homomeric rho1 gamma-aminobutyric acid (GABA) receptor that, when mutated, produces spontaneous opening.
    Torres VI; Weiss DS
    J Biol Chem; 2002 Nov; 277(46):43741-8. PubMed ID: 12226075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Substitutions of the highly conserved M2 leucine create spontaneously opening rho1 gamma-aminobutyric acid receptors.
    Chang Y; Weiss DS
    Mol Pharmacol; 1998 Mar; 53(3):511-23. PubMed ID: 9495819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for coassembly of mutant GABAC rho1 with GABAA gamma2S, glycine alpha1 and glycine alpha2 receptor subunits in vitro.
    Pan ZH; Zhang D; Zhang X; Lipton SA
    Eur J Neurosci; 2000 Sep; 12(9):3137-45. PubMed ID: 10998097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Agonist- and antagonist-induced conformational changes of loop F and their contributions to the rho1 GABA receptor function.
    Zhang J; Xue F; Chang Y
    J Physiol; 2009 Jan; 587(1):139-53. PubMed ID: 19015197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relative impact of residues at the intracellular and extracellular ends of the human GABAC rho1 receptor M2 domain on picrotoxinin activity.
    Carland JE; Johnston GA; Chebib M
    Eur J Pharmacol; 2008 Feb; 580(1-2):27-35. PubMed ID: 18031737
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GABA(A) receptor beta 2 Tyr97 and Leu99 line the GABA-binding site. Insights into mechanisms of agonist and antagonist actions.
    Boileau AJ; Newell JG; Czajkowski C
    J Biol Chem; 2002 Jan; 277(4):2931-7. PubMed ID: 11711541
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural determinants for antagonist pharmacology that distinguish the rho1 GABAC receptor from GABAA receptors.
    Zhang J; Xue F; Chang Y
    Mol Pharmacol; 2008 Oct; 74(4):941-51. PubMed ID: 18599601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Permeability and single channel conductance of human homomeric rho1 GABAC receptors.
    Wotring VE; Chang Y; Weiss DS
    J Physiol; 1999 Dec; 521 Pt 2(Pt 2):327-36. PubMed ID: 10581305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative surface accessibility of a pore-lining threonine residue (T6') in the glycine and GABA(A) receptors.
    Shan Q; Haddrill JL; Lynch JW
    J Biol Chem; 2002 Nov; 277(47):44845-53. PubMed ID: 12239220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differentiating enantioselective actions of GABOB: a possible role for threonine 244 in the binding site of GABA(C) ρ(1) receptors.
    Yamamoto I; Absalom N; Carland JE; Doddareddy MR; Gavande N; Johnston GA; Hanrahan JR; Chebib M
    ACS Chem Neurosci; 2012 Sep; 3(9):665-73. PubMed ID: 23019493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A single amino acid in gamma-aminobutyric acid rho 1 receptors affects competitive and noncompetitive components of picrotoxin inhibition.
    Wang TL; Hackam AS; Guggino WB; Cutting GR
    Proc Natl Acad Sci U S A; 1995 Dec; 92(25):11751-5. PubMed ID: 8524842
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence that the TM1-TM2 loop contributes to the rho1 GABA receptor pore.
    Filippova N; Wotring VE; Weiss DS
    J Biol Chem; 2004 May; 279(20):20906-14. PubMed ID: 15007065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The interaction of the gamma-aminobutyric acid transporter GAT-1 with the neurotransmitter is selectively impaired by sulfhydryl modification of a conformationally sensitive cysteine residue engineered into extracellular loop IV.
    Zomot E; Kanner BI
    J Biol Chem; 2003 Oct; 278(44):42950-8. PubMed ID: 12925537
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies on the mechanisms of action of picrotoxin, quercetin and pregnanolone at the GABA rho 1 receptor.
    Goutman JD; Calvo DJ
    Br J Pharmacol; 2004 Feb; 141(4):717-27. PubMed ID: 14732759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The agonist binding site of the gamma-aminobutyric acid type A channel is not formed by the extracellular cysteine loop.
    Amin J; Dickerson IM; Weiss DS
    Mol Pharmacol; 1994 Feb; 45(2):317-23. PubMed ID: 7509443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitric oxide potentiation of the homomeric ρ1 GABA(C) receptor function.
    Gasulla J; Beltrán González AN; Calvo DJ
    Br J Pharmacol; 2012 Nov; 167(6):1369-77. PubMed ID: 22747884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Agonist-induced closure of constitutively open gamma-aminobutyric acid channels with mutated M2 domains.
    Pan ZH; Zhang D; Zhang X; Lipton SA
    Proc Natl Acad Sci U S A; 1997 Jun; 94(12):6490-5. PubMed ID: 9177245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of an Inhibitory Alcohol Binding Site in GABAA ρ1 Receptors.
    Borghese CM; Ruiz CI; Lee US; Cullins MA; Bertaccini EJ; Trudell JR; Harris RA
    ACS Chem Neurosci; 2016 Jan; 7(1):100-8. PubMed ID: 26571107
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Allosteric activation mechanism of the alpha 1 beta 2 gamma 2 gamma-aminobutyric acid type A receptor revealed by mutation of the conserved M2 leucine.
    Chang Y; Weiss DS
    Biophys J; 1999 Nov; 77(5):2542-51. PubMed ID: 10545355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modular design of Cys-loop ligand-gated ion channels: functional 5-HT3 and GABA rho1 receptors lacking the large cytoplasmic M3M4 loop.
    Jansen M; Bali M; Akabas MH
    J Gen Physiol; 2008 Feb; 131(2):137-46. PubMed ID: 18227272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.