BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 12226199)

  • 1. Kinetic Studies on the Xanthophyll Cycle in Barley Leaves (Influence of Antenna Size and Relations to Nonphotochemical Chlorophyll Fluorescence Quenching).
    Hartel H; Lokstein H; Grimm B; Rank B
    Plant Physiol; 1996 Feb; 110(2):471-482. PubMed ID: 12226199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chlorophyll a/b-binding proteins, pigment conversions, and early light-induced proteins in a chlorophyll b-less barley mutant.
    Król M; Spangfort MD; Huner NP; Oquist G; Gustafsson P; Jansson S
    Plant Physiol; 1995 Mar; 107(3):873-83. PubMed ID: 7748263
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photosystem II chlorophyll a fluorescence lifetimes and intensity are independent of the antenna size differences between barley wild-type and chlorina mutants: Photochemical quenching and xanthophyll cycle-dependent nonphotochemical quenching of fluorescence.
    Gilmore AM; Hazlett TL; Debrunner PG; Govindjee
    Photosynth Res; 1996 May; 48(1-2):171-87. PubMed ID: 24271297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics of chromophore binding to Lhc proteins in vivo and in vitro during operation of the xanthophyll cycle.
    Morosinotto T; Baronio R; Bassi R
    J Biol Chem; 2002 Oct; 277(40):36913-20. PubMed ID: 12114527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics of Xanthophyll-Cycle Activity in Different Antenna Subcomplexes in the Photosynthetic Membranes of Higher Plants (The Relationship between Zeaxanthin Conversion and Nonphotochemical Fluorescence Quenching).
    Farber A; Young AJ; Ruban AV; Horton P; Jahns P
    Plant Physiol; 1997 Dec; 115(4):1609-1618. PubMed ID: 12223884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chlamydomonas Xanthophyll Cycle Mutants Identified by Video Imaging of Chlorophyll Fluorescence Quenching.
    Niyogi KK; Bjorkman O; Grossman AR
    Plant Cell; 1997 Aug; 9(8):1369-1380. PubMed ID: 12237386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The xanthophyll cycle of higher plants: influence of antenna size and membrane organization.
    Färber A; Jahns P
    Biochim Biophys Acta; 1998 Jan; 1363(1):47-58. PubMed ID: 9526041
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Xanthophyll cycle-dependent nonphotochemical quenching in Photosystem II: Mechanistic insights gained from Arabidopsis thaliana L. mutants that lack violaxanthin deepoxidase activity and/or lutein.
    Gilmore AM
    Photosynth Res; 2001; 67(1-2):89-101. PubMed ID: 16228319
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of the excitation energy utilization in the photosynthetic apparatus of chlorina f2 barley mutant grown under different irradiances.
    Stroch M; Cajánek M; Kalina J; Spunda V
    J Photochem Photobiol B; 2004 Jul; 75(1-2):41-50. PubMed ID: 15246349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationship between xanthophyll cycle and non-photochemical quenching in rice (Oryza sativa L.) plants in response to light stress.
    Vaz J; Sharma PK
    Indian J Exp Biol; 2011 Jan; 49(1):60-7. PubMed ID: 21365998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature dependence of violaxanthin de-epoxidation and non-photochemical fluorescence quenching in intact leaves of Gossypium hirsutum L. and Malva parviflora L.
    Bilger W; Björkman O
    Planta; 1991 May; 184(2):226-34. PubMed ID: 24194074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photosynthetic performance and fluorescence in relation to antenna size and absorption cross-sections in rye and barley grown under normal and intermittent light conditions.
    Falk S; Bruce D; Huner NP
    Photosynth Res; 1994 Nov; 42(2):145-55. PubMed ID: 24306502
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of xanthophyll cycle carotenoids and chlorophyll fluorescence in light intensity-dependent chlorophyll-deficient mutants of wheat and barley.
    Falbel TG; Staehelin LA; Adams WW
    Photosynth Res; 1994 Dec; 42(3):191-202. PubMed ID: 24306561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced photoprotection by protein-bound vs free xanthophyll pools: a comparative analysis of chlorophyll b and xanthophyll biosynthesis mutants.
    Dall'Osto L; Cazzaniga S; Havaux M; Bassi R
    Mol Plant; 2010 May; 3(3):576-93. PubMed ID: 20100799
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Xanthophyll Cycle in Intermittent Light-Grown Pea Plants (Possible Functions of Chlorophyll a/b-Binding Proteins).
    Jahns P
    Plant Physiol; 1995 May; 108(1):149-156. PubMed ID: 12228458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lutein is needed for efficient chlorophyll triplet quenching in the major LHCII antenna complex of higher plants and effective photoprotection in vivo under strong light.
    Dall'Osto L; Lico C; Alric J; Giuliano G; Havaux M; Bassi R
    BMC Plant Biol; 2006 Dec; 6():32. PubMed ID: 17192177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The xanthophyll cycle modulates the kinetics of nonphotochemical energy dissipation in isolated light-harvesting complexes, intact chloroplasts, and leaves of spinach.
    Ruban AV; Horton P
    Plant Physiol; 1999 Feb; 119(2):531-42. PubMed ID: 9952449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The kinetics of zeaxanthin formation is retarded by dicyclohexylcarbodiimide.
    Heyde S; Jahns P
    Plant Physiol; 1998 Jun; 117(2):659-65. PubMed ID: 9625719
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leaf Xanthophyll content and composition in sun and shade determined by HPLC.
    Thayer SS; Björkman O
    Photosynth Res; 1990 Mar; 23(3):331-43. PubMed ID: 24419657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The lutein epoxide cycle in higher plants: its relationships to other xanthophyll cycles and possible functions.
    García-Plazaola JI; Matsubara S; Osmond CB
    Funct Plant Biol; 2007 Sep; 34(9):759-773. PubMed ID: 32689404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.