These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 12226280)

  • 61. Low Water Potential Disrupts Carbohydrate Metabolism in Maize (Zea mays L.) Ovaries.
    Zinselmeier C; Westgate ME; Schussler JR; Jones RJ
    Plant Physiol; 1995 Feb; 107(2):385-391. PubMed ID: 12228365
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The effect of exogenous sugars on the control of flux by adenosine 5'-diphosphoglucose pyrophosphorylase in potato tuber discs.
    Sweetlove LJ; Tomlinson KL; Hill SA
    Planta; 2002 Mar; 214(5):741-50. PubMed ID: 11882943
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Starch biosynthesis during pollen maturation is associated with altered patterns of gene expression in maize.
    Datta R; Chamusco KC; Chourey PS
    Plant Physiol; 2002 Dec; 130(4):1645-56. PubMed ID: 12481048
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Chemical hybridizing agent SQ-1-induced male sterility in Triticum aestivum L.: a comparative analysis of the anther proteome.
    Liu H; Zhang G; Wang J; Li J; Song Y; Qiao L; Niu N; Wang J; Ma S; Li L
    BMC Plant Biol; 2018 Jan; 18(1):7. PubMed ID: 29304738
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Analysis of the meiotic transcriptome reveals the genes related to the regulation of pollen abortion in cytoplasmic male-sterile pepper (Capsicum annuum L.).
    Qiu Y; Liao L; Jin X; Mao D; Liu R
    Gene; 2018 Jan; 641():8-17. PubMed ID: 29031775
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Maize cytosolic invertase INVAN6 ensures faithful meiotic progression under heat stress.
    Huang W; Li Y; Du Y; Pan L; Huang Y; Liu H; Zhao Y; Shi Y; Ruan YL; Dong Z; Jin W
    New Phytol; 2022 Dec; 236(6):2172-2188. PubMed ID: 36104957
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Abscisic acid and the key enzymes and genes in sucrose-to-starch conversion in rice spikelets in response to soil drying during grain filling.
    Wang Z; Xu Y; Chen T; Zhang H; Yang J; Zhang J
    Planta; 2015 May; 241(5):1091-107. PubMed ID: 25589060
    [TBL] [Abstract][Full Text] [Related]  

  • 68. In vivo studies on artificial induction of thermotolerance to detached panicles of wheat (Triticum aestivum L) cultivars under heat stress.
    Asthir B; Bhatia S
    J Food Sci Technol; 2014 Jan; 51(1):118-23. PubMed ID: 24426056
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Rice male development under drought stress: phenotypic changes and stage-dependent transcriptomic reprogramming.
    Jin Y; Yang H; Wei Z; Ma H; Ge X
    Mol Plant; 2013 Sep; 6(5):1630-45. PubMed ID: 23604203
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Starch and the control of kernel number in maize at low water potentials.
    Zinselmeier C; Jeong BR; Boyer JS
    Plant Physiol; 1999 Sep; 121(1):25-36. PubMed ID: 10482657
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Wheat TaMs1 is a glycosylphosphatidylinositol-anchored lipid transfer protein necessary for pollen development.
    Kouidri A; Baumann U; Okada T; Baes M; Tucker EJ; Whitford R
    BMC Plant Biol; 2018 Dec; 18(1):332. PubMed ID: 30518316
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Carbohydrate Content and Enzyme Metabolism in Developing Canola Siliques.
    King SP; Lunn JE; Furbank RT
    Plant Physiol; 1997 May; 114(1):153-160. PubMed ID: 12223695
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Contributions of soluble carbohydrates to the osmotic adjustment in the C4 grass Setaria sphacelata: a comparison between rapidly and slowly imposed water stress.
    da Silva JM; ArrabaƧa MC
    J Plant Physiol; 2004 May; 161(5):551-5. PubMed ID: 15202711
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Transcriptomic analysis of starch biosynthesis in the developing grain of hexaploid wheat.
    Stamova BS; Laudencia-Chingcuanco D; Beckles DM
    Int J Plant Genomics; 2009; 2009():407426. PubMed ID: 20224818
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Light Regulation of Sink Metabolism in Tomato Fruit : II. Carbohydrate Metabolizing Enzymes.
    Guan HP; Janes HW
    Plant Physiol; 1991 Jul; 96(3):922-7. PubMed ID: 16668276
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Effect of osmo priming on sucrose metabolism in spring maize, during the period of grain filling, under limited irrigation conditions.
    Kawatra M; Kaur K; Kaur G
    Physiol Mol Biol Plants; 2019 Nov; 25(6):1367-1376. PubMed ID: 31736540
    [TBL] [Abstract][Full Text] [Related]  

  • 77. CYTOSOLIC INVERTASE2 regulates flowering and reactive oxygen species-triggered programmed cell death in tomato.
    Zhang Q; Wang X; Zhao T; Luo J; Liu X; Jiang J
    Plant Physiol; 2024 Jul; ():. PubMed ID: 38991558
    [TBL] [Abstract][Full Text] [Related]  

  • 78. bHLH Transcription Factor NtMYC2a Regulates Carbohydrate Metabolism during the Pollen Development of Tobacco (
    Bian S; Tian T; Ding Y; Yan N; Wang C; Fang N; Liu Y; Zhang Z; Zhang H
    Plants (Basel); 2021 Dec; 11(1):. PubMed ID: 35009020
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Quantitative Proteomics and Transcriptomics Reveals Differences in Proteins During Anthers Development in
    Sun Y; Wang X; Chen Z; Qin L; Li B; Ouyang L; Peng X; He H
    Front Plant Sci; 2021; 12():744792. PubMed ID: 34868129
    [No Abstract]   [Full Text] [Related]  

  • 80. Increasing leaf export and grain import capacities in maize plants under water stress.
    Trouverie J; Prioul JL
    Funct Plant Biol; 2006 Mar; 33(3):209-218. PubMed ID: 32689228
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.