These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 12226303)

  • 61. Solid-State NMR Characterization of Mefloquine Resinate Complexes Designed for Taste-Masking Pediatric Formulations.
    Borré LB; Sousa EGR; San Gil RAS; Baptista MM; Leitão AA; De Almeida JMAR; Carr O; Oliveira ON; Shimizu FM; Guimarães TF
    Pharmaceuticals (Basel); 2024 Jul; 17(7):. PubMed ID: 39065722
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Wood cellulose microfibrils have a 24-chain core-shell nanostructure in seed plants.
    Tai HC; Chang CH; Cai W; Lin JH; Huang SJ; Lin QY; Yuan EC; Li SL; Lin YJ; Chan JCC; Tsao CS
    Nat Plants; 2023 Jul; 9(7):1154-1168. PubMed ID: 37349550
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Solution-state nuclear magnetic resonance spectroscopy of crystalline cellulosic materials using a direct dissolution ionic liquid electrolyte.
    Fliri L; Heise K; Koso T; Todorov AR; Del Cerro DR; Hietala S; Fiskari J; Kilpeläinen I; Hummel M; King AWT
    Nat Protoc; 2023 Jul; 18(7):2084-2123. PubMed ID: 37237027
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Chemical Modification of Reducing End-Groups in Cellulose Nanocrystals.
    Heise K; Delepierre G; King AWT; Kostiainen MA; Zoppe J; Weder C; Kontturi E
    Angew Chem Int Ed Engl; 2021 Jan; 60(1):66-87. PubMed ID: 32329947
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Depolarizing metrics for plant samples imaging.
    Van Eeckhout A; Garcia-Caurel E; Garnatje T; Durfort M; Escalera JC; Vidal J; Gil JJ; Campos J; Lizana A
    PLoS One; 2019; 14(3):e0213909. PubMed ID: 30870523
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Plant Fibre: Molecular Structure and Biomechanical Properties, of a Complex Living Material, Influencing Its Deconstruction towards a Biobased Composite.
    Sorieul M; Dickson A; Hill SJ; Pearson H
    Materials (Basel); 2016 Jul; 9(8):. PubMed ID: 28773739
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Cellulose Structural Polymorphism in Plant Primary Cell Walls Investigated by High-Field 2D Solid-State NMR Spectroscopy and Density Functional Theory Calculations.
    Wang T; Yang H; Kubicki JD; Hong M
    Biomacromolecules; 2016 Jun; 17(6):2210-22. PubMed ID: 27192562
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Solid-state NMR investigations of cellulose structure and interactions with matrix polysaccharides in plant primary cell walls.
    Wang T; Hong M
    J Exp Bot; 2016 Jan; 67(2):503-14. PubMed ID: 26355148
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Cellulose-Pectin Spatial Contacts Are Inherent to Never-Dried Arabidopsis Primary Cell Walls: Evidence from Solid-State Nuclear Magnetic Resonance.
    Wang T; Park YB; Cosgrove DJ; Hong M
    Plant Physiol; 2015 Jul; 168(3):871-84. PubMed ID: 26036615
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Structural analysis of glucans.
    Synytsya A; Novak M
    Ann Transl Med; 2014 Feb; 2(2):17. PubMed ID: 25332993
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Applications of nuclear magnetic resonance sensors to cultural heritage.
    Proietti N; Capitani D; Di Tullio V
    Sensors (Basel); 2014 Apr; 14(4):6977-97. PubMed ID: 24755519
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Wide-angle x-ray scattering and solid-state nuclear magnetic resonance data combined to test models for cellulose microfibrils in mung bean cell walls.
    Newman RH; Hill SJ; Harris PJ
    Plant Physiol; 2013 Dec; 163(4):1558-67. PubMed ID: 24154621
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Sensitivity-enhanced solid-state NMR detection of expansin's target in plant cell walls.
    Wang T; Park YB; Caporini MA; Rosay M; Zhong L; Cosgrove DJ; Hong M
    Proc Natl Acad Sci U S A; 2013 Oct; 110(41):16444-9. PubMed ID: 24065828
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Sensing the structural differences in cellulose from apple and bacterial cell wall materials by Raman and FT-IR spectroscopy.
    Szymańska-Chargot M; Cybulska J; Zdunek A
    Sensors (Basel); 2011; 11(6):5543-60. PubMed ID: 22163913
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Chimeric proteins suggest that the catalytic and/or C-terminal domains give CesA1 and CesA3 access to their specific sites in the cellulose synthase of primary walls.
    Wang J; Howles PA; Cork AH; Birch RJ; Williamson RE
    Plant Physiol; 2006 Oct; 142(2):685-95. PubMed ID: 16891551
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Establishing and maintaining axial growth: wall mechanical properties and the cytoskeleton.
    Wasteneys GO; Fujita M
    J Plant Res; 2006 Jan; 119(1):5-10. PubMed ID: 16284708
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Cell differentiation, secondary cell-wall formation and transformation of callus tissue of Pinus radiata D. Don.
    Möller R; McDonald AG; Walter C; Harris PJ
    Planta; 2003 Sep; 217(5):736-47. PubMed ID: 12811558
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Atomic force microscopy of microfibrils in primary cell walls.
    Davies LM; Harris PJ
    Planta; 2003 Jun; 217(2):283-9. PubMed ID: 12783336
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Molecular Rigidity in Dry and Hydrated Onion Cell Walls.
    Ha MA; Apperley DC; Jarvis MC
    Plant Physiol; 1997 Oct; 115(2):593-598. PubMed ID: 12223827
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Estimation of Polymer Rigidity in Cell Walls of Growing and Nongrowing Celery Collenchyma by Solid-State Nuclear Magnetic Resonance in Vivo.
    Fenwick KM; Jarvis MC; Apperley DC
    Plant Physiol; 1997 Oct; 115(2):587-592. PubMed ID: 12223826
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.