BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 12226445)

  • 1. The Role of Ligand Exchange in the Uptake of Iron from Microbial Siderophores by Gramineous Plants.
    Yehuda Z; Shenker M; Romheld V; Marschner H; Hadar Y; Chen Y
    Plant Physiol; 1996 Nov; 112(3):1273-1280. PubMed ID: 12226445
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Iron Inefficiency in Maize Mutant ys1 (Zea mays L. cv Yellow-Stripe) Is Caused by a Defect in Uptake of Iron Phytosiderophores.
    Von Wiren N; Mori S; Marschner H; Romheld V
    Plant Physiol; 1994 Sep; 106(1):71-77. PubMed ID: 12232304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Competition between micro-organisms and roots of barley and sorghum for iron accumulated in the root apoplasm.
    Wirén NV; Römheld V; Shioiri T; Marschner H
    New Phytol; 1995 Aug; 130(4):511-521. PubMed ID: 33874479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Iron acquisition by phytosiderophores contributes to cadmium tolerance.
    Meda AR; Scheuermann EB; Prechsl UE; Erenoglu B; Schaaf G; Hayen H; Weber G; von Wirén N
    Plant Physiol; 2007 Apr; 143(4):1761-73. PubMed ID: 17337530
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fusarinines and dimerum acid, mono- and dihydroxamate siderophores from Penicillium chrysogenum, improve iron utilization by strategy I and strategy II plants.
    Hördt W; Römheld V; Winkelmann G
    Biometals; 2000 Mar; 13(1):37-46. PubMed ID: 10831223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Roots of Iron-Efficient Maize also Absorb Phytosiderophore-Chelated Zinc.
    Von Wiren N; Marschner H; Romheld V
    Plant Physiol; 1996 Aug; 111(4):1119-1125. PubMed ID: 12226351
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phytosiderophores influence on cadmium mobilization and uptake by wheat and barley plants.
    Shenker M; Fan TW; Crowley DE
    J Environ Qual; 2001; 30(6):2091-8. PubMed ID: 11790018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for a specific uptake system for iron phytosiderophores in roots of grasses.
    Römheld V; Marschner H
    Plant Physiol; 1986 Jan; 80(1):175-80. PubMed ID: 16664577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The root-hairless barley mutant brb used as model for assessment of role of root hairs in iron accumulation.
    Zuchi S; Cesco S; Gottardi S; Pinton R; Römheld V; Astolfi S
    Plant Physiol Biochem; 2011 May; 49(5):506-12. PubMed ID: 21236691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iron uptake from ferrioxamine and from ferrirhizoferrin by germinating spores of Rhizopus microsporus.
    de Locht M; Boelaert JR; Schneider YJ
    Biochem Pharmacol; 1994 May; 47(10):1843-50. PubMed ID: 8204101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of nitrogen on root release of phytosiderophores and root uptake of Fe(III)-phytosiderophore in Fe-deficient wheat plants.
    Aciksoz SB; Ozturk L; Gokmen OO; Römheld V; Cakmak I
    Physiol Plant; 2011 Jul; 142(3):287-96. PubMed ID: 21338370
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Short-term effects of rhizosphere microorganisms on fe uptake from microbial siderophores by maize and oat.
    Bar-Ness E; Hadar Y; Chen Y; Römheld V; Marschner H
    Plant Physiol; 1992 Sep; 100(1):451-6. PubMed ID: 16652982
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic Interactions between
    Boiteau RM; Markillie LM; Hoyt DW; Hu D; Chu RK; Mitchell HD; Pasa-Tolic L; Jansson JK; Jansson C
    mSystems; 2021 Jan; 6(1):. PubMed ID: 33402348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iron uptake by plants from microbial siderophores : a study with 7-nitrobenz-2 oxa-1,3-diazole-desferrioxamine as fluorescent ferrioxamine B analog.
    Bar-Ness E; Hadar Y; Chen Y; Shanzer A; Libman J
    Plant Physiol; 1992 Aug; 99(4):1329-35. PubMed ID: 16669040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Early senescence of the oldest leaves of Fe-deficient barley plants may contribute to phytosiderophore release from the roots.
    Higuchi K; Iwase J; Tsukiori Y; Nakura D; Kobayashi N; Ohashi H; Saito A; Miwa E
    Physiol Plant; 2014 Jul; 151(3):313-22. PubMed ID: 24611482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of the root apoplasm for iron acquisition by wheat plants.
    Zhang FS; Römheld V; Marschner H
    Plant Physiol; 1991 Dec; 97(4):1302-5. PubMed ID: 16668547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iron deficiency in barley plants: phytosiderophore release, iron translocation, and DNA methylation.
    Bocchini M; Bartucca ML; Ciancaleoni S; Mimmo T; Cesco S; Pii Y; Albertini E; Del Buono D
    Front Plant Sci; 2015; 6():514. PubMed ID: 26217365
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radiochemical Evidence for the Contribution of Chemotyped Siderophore Producing Bacteria Towards Plant Iron Nutrition.
    Abiraami TV; Suman A; Singh B; Aswini K; Annapurna K
    Curr Microbiol; 2021 Dec; 78(12):4072-4083. PubMed ID: 34559288
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phytosiderophores revisited: 2'-deoxymugineic acid-mediated iron uptake triggers nitrogen assimilation in rice (Oryza sativa L.) seedlings.
    Araki R; Namba K; Murata Y; Murata J
    Plant Signal Behav; 2015; 10(6):e1031940. PubMed ID: 26023724
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carrier-facilitated bulk liquid membrane transport of iron(III)-siderophore complexes utilizing first coordination sphere recognition.
    Wirgau JI; Crumbliss AL
    Inorg Chem; 2003 Sep; 42(18):5762-70. PubMed ID: 12950227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.