These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 12226456)

  • 41. Production, rapid purification and catalytic characterization of extracellular phytase from Aspergillus ficuum.
    Ullah AH
    Prep Biochem; 1988; 18(4):443-58. PubMed ID: 2852806
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Inositol 1,3,4,5,6-pentakisphosphate 2-kinase from maize: molecular and biochemical characterization.
    Sun Y; Thompson M; Lin G; Butler H; Gao Z; Thornburgh S; Yau K; Smith DA; Shukla VK
    Plant Physiol; 2007 Jul; 144(3):1278-91. PubMed ID: 17535825
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Microbial phytase addition resulted in a greater increase in phosphorus digestibility in dry-fed compared with liquid-fed non-heat-treated wheat-barley-maize diets for pigs.
    Blaabjerg K; Thomassen AM; Poulsen HD
    Animal; 2015 Feb; 9(2):243-8. PubMed ID: 25245085
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Phytase activity in Cryptococcus laurentii ABO 510.
    van Staden J; den Haan R; van Zyl WH; Botha A; Viljoen-Bloom M
    FEMS Yeast Res; 2007 May; 7(3):442-8. PubMed ID: 17233762
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Production, purification and characterization of thermostable phytase from thermophilic fungus Thermomyces lanuginosus TL-7.
    Gulati HK; Chadha BS; Saini HS
    Acta Microbiol Immunol Hung; 2007 Jun; 54(2):121-38. PubMed ID: 17899792
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Identification, characterization, and overexpression of a phytase with potential industrial interest.
    Shi XW; Sun ML; Zhou B; Wang XY
    Can J Microbiol; 2009 May; 55(5):599-604. PubMed ID: 19483788
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Biochemical Characterization of a Psychrophilic Phytase from an Artificially Cultivable Morel Morchella importuna.
    Tan H; Tang J; Li X; Liu T; Miao R; Huang Z; Wang Y; Gan B; Peng W
    J Microbiol Biotechnol; 2017 Dec; 27(12):2180-2189. PubMed ID: 29017237
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effect of several germination treatments on phosphatases activities and degradation of phytate in faba bean (Vicia faba L.) and azuki bean (Vigna angularis L.).
    Luo Y; Xie W; Luo F
    J Food Sci; 2012 Oct; 77(10):C1023-9. PubMed ID: 22938099
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Phytase-mediated mineral solubilization from cereals under in vitro gastric conditions.
    Nielsen AV; Meyer AS
    J Sci Food Agric; 2016 Aug; 96(11):3755-61. PubMed ID: 26678688
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Metabolism of extracellular inositol hexaphosphate (phytate) by Saccharomyces cerevisiae.
    Andlid TA; Veide J; Sandberg AS
    Int J Food Microbiol; 2004 Dec; 97(2):157-69. PubMed ID: 15541802
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Purification and characterization of a thermostable extracellular phytase from Bacillus licheniformis PFBL-03.
    Fasimoye FO; Olajuyigbe FM; Sanni MD
    Prep Biochem Biotechnol; 2014; 44(2):193-205. PubMed ID: 24152104
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Biochemical characterisation of extracellular phytase (myo-inositol hexakisphosphate phosphohydrolase) from a hyper-producing strain of Aspergillus niger van Teighem.
    Vats P; Banerjee UC
    J Ind Microbiol Biotechnol; 2005 Apr; 32(4):141-7. PubMed ID: 15776271
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The role of acid phosphatase activity during enzymic dephosphorylation of phytates byAspergillus niger phytase.
    Zyta K
    World J Microbiol Biotechnol; 1993 Jan; 9(1):117-9. PubMed ID: 24419854
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Expression and low pH increase the activity of an apoplastic acid phosphatase in growing tissues from Zea mays.
    Pfeiffer W
    Physiol Plant; 1998 Jan; 102(1):111-118. PubMed ID: 35359131
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Pyruvate Decarboxylase from Zea mays L. : I. Purification and Partial Characterization from Mature Kernels and Anaerobically Treated Roots.
    Lee TC; Langston-Unkefer PJ
    Plant Physiol; 1985 Sep; 79(1):242-7. PubMed ID: 16664379
    [TBL] [Abstract][Full Text] [Related]  

  • 56. 5-enol-Pyruvyl-Shikimate-3-Phosphate Synthase from Zea mays Cultured Cells (Purification and Properties).
    Forlani G; Parisi B; Nielsen E
    Plant Physiol; 1994 Aug; 105(4):1107-1114. PubMed ID: 12232268
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Catalytic properties of wheat phytase that favorably degrades long-chain inorganic polyphosphate.
    An J; Cho J
    Asian-Australas J Anim Sci; 2020 Jan; 33(1):127-131. PubMed ID: 31208182
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Phosphatase Activities of Endolithic Communities in Rocks of the Antarctic Dry Valleys.
    Banerjee M; Whitton BA; Wynn-Williams DD
    Microb Ecol; 2000 Jan; 39(1):80-91. PubMed ID: 10790521
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Purification and Properties of a Monofunctional Imidazoleglycerol-Phosphate Dehydratase from Wheat.
    Mano J; Hatano M; Koizumi S; Tada S; Hashimoto M; Scheidegger A
    Plant Physiol; 1993 Nov; 103(3):733-739. PubMed ID: 12231975
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Purification and Characterization of Two Benzoyl-l-Tyrosine p-Nitroanilide Hydrolases from Etiolated Leaves of Zea mays L.
    Doi M; Shioi Y
    Plant Physiol; 1987 Jul; 84(3):770-4. PubMed ID: 16665520
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.