BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 12226473)

  • 1. Physiological Characterization of Root Zn2+ Absorption and Translocation to Shoots in Zn Hyperaccumulator and Nonaccumulator Species of Thlaspi.
    Lasat MM; Baker A; Kochian LV
    Plant Physiol; 1996 Dec; 112(4):1715-1722. PubMed ID: 12226473
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Altered Zn compartmentation in the root symplasm and stimulated Zn absorption into the leaf as mechanisms involved in Zn hyperaccumulation in thlaspi caerulescens.
    Lasat MM; Baker AJ; Kochian LV
    Plant Physiol; 1998 Nov; 118(3):875-83. PubMed ID: 9808732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular physiology of zinc transport in the Zn hyperaccumulator Thlaspi caerulescens.
    Lasat MM; Pence NS; Garvin DF; Ebbs SD; Kochian LV
    J Exp Bot; 2000 Jan; 51(342):71-9. PubMed ID: 10938797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chelation by histidine inhibits the vacuolar sequestration of nickel in roots of the hyperaccumulator Thlaspi caerulescens.
    Richau KH; Kozhevnikova AD; Seregin IV; Vooijs R; Koevoets PLM; Smith JAC; Ivanov VB; Schat H
    New Phytol; 2009; 183(1):106-116. PubMed ID: 19368671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reciprocal grafting separates the roles of the root and shoot in zinc hyperaccumulation in Thlaspi caerulescens.
    Guimarães MA; Gustin JL; Salt DE
    New Phytol; 2009 Oct; 184(2):323-329. PubMed ID: 19656301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Zinc Isotope Fractionation in the Hyperaccumulator Noccaea caerulescens and the Nonaccumulating Plant Thlaspi arvense at Low and High Zn Supply.
    Tang YT; Cloquet C; Deng TH; Sterckeman T; Echevarria G; Yang WJ; Morel JL; Qiu RL
    Environ Sci Technol; 2016 Aug; 50(15):8020-7. PubMed ID: 27359107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plant Cd2+ and Zn2+ status effects on root and shoot heavy metal accumulation in Thlaspi caerulescens.
    Papoyan A; Piñeros M; Kochian LV
    New Phytol; 2007; 175(1):51-58. PubMed ID: 17547666
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Histidine-mediated xylem loading of zinc is a species-wide character in Noccaea caerulescens.
    Kozhevnikova AD; Seregin IV; Erlikh NT; Shevyreva TA; Andreev IM; Verweij R; Schat H
    New Phytol; 2014 Jul; 203(2):508-519. PubMed ID: 24750120
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hyperaccumulation of Zn by Thlaspi caerulescens can ameliorate Zn toxicity in the rhizosphere of cocropped Thlaspi arvense.
    Whiting SN; Leake JR; McGrath SP; Baker AJ
    Environ Sci Technol; 2001 Aug; 35(15):3237-41. PubMed ID: 11506012
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rhizosphere bacteria mobilize Zn for hyperaccumulation by Thlaspi caerulescens.
    Whiting SN; de Souza MP; Terry N
    Environ Sci Technol; 2001 Aug; 35(15):3144-50. PubMed ID: 11505990
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiological evidence for a high-affinity cadmium transporter highly expressed in a Thlaspi caerulescens ecotype.
    Lombi E; Zhao FJ; McGrath SP; Young SD; Sacchi GA
    New Phytol; 2001 Jan; 149(1):53-60. PubMed ID: 33853240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Root-to-shoot long-distance circulation of nicotianamine and nicotianamine-nickel chelates in the metal hyperaccumulator Thlaspi caerulescens.
    Mari S; Gendre D; Pianelli K; Ouerdane L; Lobinski R; Briat JF; Lebrun M; Czernic P
    J Exp Bot; 2006; 57(15):4111-22. PubMed ID: 17079698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens.
    Pence NS; Larsen PB; Ebbs SD; Letham DL; Lasat MM; Garvin DF; Eide D; Kochian LV
    Proc Natl Acad Sci U S A; 2000 Apr; 97(9):4956-60. PubMed ID: 10781104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Root exudates of the hyperaccumulator Thlaspi caerulescens do not enhance metal mobilization.
    Zhao FJ; Hamon RE; McLaughlin MJ
    New Phytol; 2001 Sep; 151(3):613-620. PubMed ID: 33853247
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nickel and zinc isotope fractionation in hyperaccumulating and nonaccumulating plants.
    Deng TH; Cloquet C; Tang YT; Sterckeman T; Echevarria G; Estrade N; Morel JL; Qiu RL
    Environ Sci Technol; 2014 Oct; 48(20):11926-33. PubMed ID: 25222693
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of the Thlaspi caerulescens and Thlaspi arvense shoot transcriptomes.
    Hammond JP; Bowen HC; White PJ; Mills V; Pyke KA; Baker AJ; Whiting SN; May ST; Broadley MR
    New Phytol; 2006; 170(2):239-60. PubMed ID: 16608451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of iron-deficiency stress responses in stimulating heavy-metal transport in plants.
    Cohen CK; Fox TC; Garvin DF; Kochian LV
    Plant Physiol; 1998 Mar; 116(3):1063-72. PubMed ID: 9501139
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characteristics of cadmium uptake in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens.
    Zhao FJ; Hamon RE; Lombi E; McLaughlin MJ; McGrath SP
    J Exp Bot; 2002 Mar; 53(368):535-43. PubMed ID: 11847252
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Root and shoot transcriptome analysis of two ecotypes of Noccaea caerulescens uncovers the role of NcNramp1 in Cd hyperaccumulation.
    Milner MJ; Mitani-Ueno N; Yamaji N; Yokosho K; Craft E; Fei Z; Ebbs S; Clemencia Zambrano M; Ma JF; Kochian LV
    Plant J; 2014 May; 78(3):398-410. PubMed ID: 24547775
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differences in whole-cell and single-channel ion currents across the plasma membrane of mesophyll cells from two closely related Thlaspi species.
    Piñeros MA; Kochian LV
    Plant Physiol; 2003 Feb; 131(2):583-94. PubMed ID: 12586882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.