BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 12226847)

  • 1. Different molecular motions in lyophilized protein formulations as determined by laboratory and rotating frame spin-lattice relaxation times.
    Yoshioka S; Aso Y; Kojima S
    J Pharm Sci; 2002 Oct; 91(10):2203-10. PubMed ID: 12226847
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glass transition-related changes in molecular mobility below glass transition temperature of freeze-dried formulations, as measured by dielectric spectroscopy and solid state nuclear magnetic resonance.
    Yoshioka S; Aso Y
    J Pharm Sci; 2005 Feb; 94(2):275-87. PubMed ID: 15570601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular mobility of lyophilized poly(vinylpyrrolidone) and methylcellulose as determined by the laboratory and rotating frame spin-lattice relaxation times of 1H and 13C.
    Yoshioka S; Aso Y; Kojima S
    Chem Pharm Bull (Tokyo); 2003 Nov; 51(11):1289-92. PubMed ID: 14600374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular mobility of protein in lyophilized formulations linked to the molecular mobility of polymer excipients, as determined by high resolution 13C solid-state NMR.
    Yoshioka S; Aso Y; Kojima S; Sakurai S; Fujiwara T; Akutsu H
    Pharm Res; 1999 Oct; 16(10):1621-5. PubMed ID: 10554107
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Softening temperature of lyophilized bovine serum albumin and gamma-globulin as measured by spin-spin relaxation time of protein protons.
    Yoshioka S; Aso Y; Kojima S
    J Pharm Sci; 1997 Apr; 86(4):470-4. PubMed ID: 9109051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of sugars on the molecular motion of freeze-dried protein formulations reflected by NMR relaxation times.
    Yoshioka S; Forney KM; Aso Y; Pikal MJ
    Pharm Res; 2011 Dec; 28(12):3237-47. PubMed ID: 21706266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of excipients on the molecular mobility of lyophilized formulations, as measured by glass transition temperature and NMR relaxation-based critical mobility temperature.
    Yoshioka S; Aso Y; Kojima S
    Pharm Res; 1999 Jan; 16(1):135-40. PubMed ID: 9950292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Beta-relaxation of insulin molecule in lyophilized formulations containing trehalose or dextran as a determinant of chemical reactivity.
    Yoshioka S; Miyazaki T; Aso Y
    Pharm Res; 2006 May; 23(5):961-6. PubMed ID: 16715386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Significance of local mobility in aggregation of beta-galactosidase lyophilized with trehalose, sucrose or stachyose.
    Yoshioka S; Miyazaki T; Aso Y; Kawanishi T
    Pharm Res; 2007 Sep; 24(9):1660-7. PubMed ID: 17404806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of high molecular mobility of poly(vinyl alcohol) on protein stability of lyophilized gamma-globulin formulations.
    Yoshioka S; Aso Y; Nakai Y; Kojima S
    J Pharm Sci; 1998 Feb; 87(2):147-51. PubMed ID: 9519145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dependence of the molecular mobility and protein stability of freeze-dried gamma-globulin formulations on the molecular weight of dextran.
    Yoshioka S; Aso Y; Kojima S
    Pharm Res; 1997 Jun; 14(6):736-41. PubMed ID: 9210190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Usefulness of the Kohlrausch-Williams-Watts stretched exponential function to describe protein aggregation in lyophilized formulations and the temperature dependence near the glass transition temperature.
    Yoshioka S; Aso Y; Kojima S
    Pharm Res; 2001 Mar; 18(3):256-60. PubMed ID: 11442261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lateral diffusion of the phospholipid molecule in dipalmitoylphosphatidylcholine bilayers. An investigation using nuclear spin--lattice relaxation in the rotating frame.
    Fisher RW; James TL
    Biochemistry; 1978 Apr; 17(7):1177-83. PubMed ID: 580765
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydration dependence of backbone and side chain polylysine dynamics: a 13C solid-state NMR and IR spectroscopy study.
    Krushelnitsky A; Faizullin D; Reichert D
    Biopolymers; 2004 Jan; 73(1):1-15. PubMed ID: 14691935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationship between the crystallization rates of amorphous nifedipine, phenobarbital, and flopropione, and their molecular mobility as measured by their enthalpy relaxation and (1)H NMR relaxation times.
    Aso Y; Yoshioka S; Kojima S
    J Pharm Sci; 2000 Mar; 89(3):408-16. PubMed ID: 10707020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NMR studies of structure and dynamics of liquid molecules confined in extended nanospaces.
    Tsukahara T; Mizutani W; Mawatari K; Kitamori T
    J Phys Chem B; 2009 Aug; 113(31):10808-16. PubMed ID: 19603763
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of molecular mobility of lyophilized bovine serum albumin and gamma-globulin by solid-state 1H NMR and relation to aggregation-susceptibility.
    Yoshioka S; Aso Y; Kojima S
    Pharm Res; 1996 Jun; 13(6):926-30. PubMed ID: 8792434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast proton spin-lattice relaxation time in the rotating frame during the application of time averaged precession frequency.
    Zujović ZD; Bowmaker GA
    J Magn Reson; 2006 Aug; 181(2):336-41. PubMed ID: 16757196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Off-resonance rotating-frame amide proton spin relaxation experiments measuring microsecond chemical exchange in proteins.
    Lundström P; Akke M
    J Biomol NMR; 2005 Jun; 32(2):163-73. PubMed ID: 16034667
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydration water dynamics in biopolymers from NMR relaxation in the rotating frame.
    Blicharska B; Peemoeller H; Witek M
    J Magn Reson; 2010 Dec; 207(2):287-93. PubMed ID: 20961779
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.