BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 12226847)

  • 21. Study of stretched polypropylene fibres by 1H pulsed and CW NMR spectroscopy.
    Sevcovic L; Mucha L
    Solid State Nucl Magn Reson; 2009 Nov; 36(3):151-7. PubMed ID: 19857943
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Low-frequency cooperative dynamics in L-, D-, and DL-alanine crystals: a 13C and 15N cross-polarization magic-angle-spinning NMR study.
    Sen S; Yu P; Risbud SH; Dick R; Deamer D
    J Phys Chem B; 2006 Sep; 110(36):18058-63. PubMed ID: 16956298
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of the internal dynamics of globular proteins in the microcrystalline and rehydrated lyophilized states.
    Krushelnitsky A; Gogolev Y; Golbik R; Dahlquist F; Reichert D
    Biochim Biophys Acta; 2006 Oct; 1764(10):1639-45. PubMed ID: 17027351
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rotating frame analog of spin-locking and spin-lattice relaxation in the doubly rotating frame.
    Tabuchi N; Hatanaka H
    J Magn Reson; 2001 Jan; 148(1):121-5. PubMed ID: 11133284
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Measurements of water proton NMR spin-lattice relaxation time in the rotating frame (T1p) for studying motions in solutions of giant macro-molecules and supramolecular particles (T2 virus).
    James TL
    Physiol Chem Phys; 1977; 9(2):161-6. PubMed ID: 601108
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Elucidation of intermediate (mobile) and slow (solidlike) protein motions in bovine lens homogenates by carbon-13 NMR spectroscopy.
    Morgan CF; Schleich T; Caines GH; Farnsworth PN
    Biochemistry; 1989 Jun; 28(12):5065-74. PubMed ID: 2765525
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A solid-state NMR study of protein mobility in lyophilized protein-sugar powders.
    Lam YH; Bustami R; Phan T; Chan HK; Separovic F
    J Pharm Sci; 2002 Apr; 91(4):943-51. PubMed ID: 11948532
    [TBL] [Abstract][Full Text] [Related]  

  • 28. T 1 rho-relaxation mapping of human femoral-tibial cartilage in vivo.
    Regatte RR; Akella SV; Wheaton AJ; Borthakur A; Kneeland JB; Reddy R
    J Magn Reson Imaging; 2003 Sep; 18(3):336-41. PubMed ID: 12938129
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular motions and ion diffusions of the room-temperature ionic liquid 1,2-dimethyl-3-propylimidazolium bis(trifluoromethylsulfonyl)amide (DMPImTFSA) studied by 1H, 13C, and 19F NMR.
    Hayamizu K; Tsuzuki S; Seki S
    J Phys Chem A; 2008 Nov; 112(47):12027-36. PubMed ID: 18973321
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Temperature- and glass transition temperature-dependence of bimolecular reaction rates in lyophilized formulations described by the Adam-Gibbs-Vogel equation.
    Yoshioka S; Aso Y; Kojima S
    J Pharm Sci; 2004 Apr; 93(4):1062-9. PubMed ID: 14999742
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of water on the molecular mobility of sucrose and poly(vinylpyrrolidone) in a colyophilized formulation as measured by (13)C-NMR relaxation time.
    Aso Y; Yoshioka S; Zhang J; Zografi G
    Chem Pharm Bull (Tokyo); 2002 Jun; 50(6):822-6. PubMed ID: 12045339
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Explanation of the crystallization rate of amorphous nifedipine and phenobarbital from their molecular mobility as measured by (13)C nuclear magnetic resonance relaxation time and the relaxation time obtained from the heating rate dependence of the glass transition temperature.
    Aso Y; Yoshioka S; Kojima S
    J Pharm Sci; 2001 Jun; 90(6):798-806. PubMed ID: 11357180
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Observation of bi-exponential T(1ρ) relaxation of in-vivo rat muscles at 3T.
    Yuan J; Zhao F; Chan Q; Wang YX
    Acta Radiol; 2012 Jul; 53(6):675-81. PubMed ID: 22761346
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Proton spin-lattice relaxation in silkworm cocoons: physisorbed water and serine side-chain motions.
    Geppi M; Mollica G; Borsacchi S; Cappellozza S
    J Phys Chem B; 2010 Mar; 114(8):2586-92. PubMed ID: 20136080
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spin relaxation and ultra-slow Li motion in an aluminosilicate glass ceramic.
    Böhmer R; Qi F
    Solid State Nucl Magn Reson; 2007 Feb; 31(1):28-34. PubMed ID: 17210247
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular motions of D-alpha-galacturonic acid (GA) and methyl-D-alpha-galacturonic acid methyl ester (MGAM) in the solid state-A proton NMR study.
    Tang HR; Belton PS
    Solid State Nucl Magn Reson; 1998 Aug; 12(1):21-30. PubMed ID: 9808293
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A proton spin-lattice relaxation rate study of methyl and t-butyl group reorientation in the solid state.
    Popa LC; Rheingold AL; Beckmann PA
    Solid State Nucl Magn Reson; 2010 Jul; 38(1):31-5. PubMed ID: 20605083
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Paramagnetic relaxation of protons in rotationally immobilized proteins.
    Korb JP; Diakova G; Bryant RG
    J Chem Phys; 2006 Apr; 124(13):134910. PubMed ID: 16613480
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Temperature dependence of bimolecular reactions associated with molecular mobility in lyophilized formulations.
    Yoshioka S; Aso Y; Kojima S
    Pharm Res; 2000 Aug; 17(8):925-9. PubMed ID: 11028936
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Water in agarose gels studied by nuclear magnetic resonance relaxation in the rotating frame.
    Andrasko J
    Biophys J; 1975 Dec; 15(12):1235-43. PubMed ID: 1203448
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.