These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Preparation and application of methylcalix[4]resorcinarene-bonded silica particles as chiral stationary phase in high-performance liquid chromatography. Tan HM; Soh SF; Zhao J; Yong EL; Gong Y Chirality; 2011; 23 Suppl 1():E91-7. PubMed ID: 21837635 [TBL] [Abstract][Full Text] [Related]
3. Cavity effects on the enantioselectivity of chiral amido[4]resorcinarene stereoisomers. Botta B; Subissati D; Tafi A; Delle Monache G; Filippi A; Speranza M Angew Chem Int Ed Engl; 2004 Sep; 43(36):4767-70. PubMed ID: 15366081 [No Abstract] [Full Text] [Related]
4. Enantiomer separation with poly-(R)-1- (alpha-naphthyl)-ethyl-methacrylamide coated on ODS silica gel by reversed phase HPLC. Oi N; Hashimoto S; Ishizuka N; Ohtake J Biomed Chromatogr; 1997; 11(5):296-7. PubMed ID: 9376712 [No Abstract] [Full Text] [Related]
5. Synthesis of dendritic stationary phases with surface-bonded L-phenylalanine derivate as chiral selector and their evaluation in HPLC resolution of racemic compounds. Yin CQ; He BJ; Huang SH; Zhang JY; Bai ZW; Li ZY Chirality; 2008 Jul; 20(7):846-55. PubMed ID: 18381735 [TBL] [Abstract][Full Text] [Related]
6. Separation of cis- and trans-isomers of thioxanthene and dibenz[b,e]oxepin derivatives on calixarene- and resorcinarene-bonded high-performance liquid chromatography stationary phases. Sokoliess T; Menyes U; Roth U; Jira T J Chromatogr A; 2002 Mar; 948(1-2):309-19. PubMed ID: 12831207 [TBL] [Abstract][Full Text] [Related]
7. The application of preparative batch HPLC, supercritical fluid chromatography, steady-state recycling, and simulated moving bed for the resolution of a racemic pharmaceutical intermediate. Yan TQ; Orihuela C; Swanson D Chirality; 2008 Feb; 20(2):139-46. PubMed ID: 18092299 [TBL] [Abstract][Full Text] [Related]
8. Enantioseparation of some clinically used drugs by HPLC using cellulose Tris (3,5-dichlorophenylcarbamate) chiral stationary phase. Ali I; Aboul-Enein HY Biomed Chromatogr; 2003; 17(2-3):113-7. PubMed ID: 12717799 [TBL] [Abstract][Full Text] [Related]
9. Preparation and evaluation of calix[4]arene-capped beta-cyclodextrin-bonded silica particles as chiral stationary phase for high-performance liquid chromatography. Thamarai Chelvi SK; Yong EL; Gong Y J Chromatogr A; 2008 Aug; 1203(1):54-8. PubMed ID: 18644598 [TBL] [Abstract][Full Text] [Related]
10. Synthesis and characterization of a novel resorcinarene-based stationary phase bearing polar headgroups for use in reversed-phase high-performance liquid chromatography. Ruderisch A; Iwanek W; Pfeiffer J; Fischer G; Albert K; Schurig V J Chromatogr A; 2005 Nov; 1095(1-2):40-9. PubMed ID: 16275281 [TBL] [Abstract][Full Text] [Related]
11. Recent advances in SPE-chiral-HPLC methods for enantiomeric separation of chiral drugs in biological samples. Ali I; Alam SD; Al-Othman ZA; Farooqi JA J Chromatogr Sci; 2013 Aug; 51(7):645-54. PubMed ID: 23377648 [TBL] [Abstract][Full Text] [Related]
12. Synthesis and application of mono-2A-azido-2A-deoxyperphenylcarbamoylated beta-cyclodextrin and mono-2A-azido-2A-deoxyperacetylated beta-cyclodextrin as chiral stationary phases for high-performance liquid chromatography. Poon YF; Muderawan IW; Ng SC J Chromatogr A; 2006 Jan; 1101(1-2):185-97. PubMed ID: 16236286 [TBL] [Abstract][Full Text] [Related]
13. Separation of racemic pharmaceuticals by high-performance liquid chromatography on silica gel modified with carbohydrate residues. Weller O; Schulze J; König WA J Chromatogr; 1987 Aug; 403():263-70. PubMed ID: 2890650 [TBL] [Abstract][Full Text] [Related]
14. Preparation and characterization of six calixarene bonded stationary phases for high performance liquid chromatography. Ding C; Qu K; Li Y; Hu K; Liu H; Ye B; Wu Y; Zhang S J Chromatogr A; 2007 Nov; 1170(1-2):73-81. PubMed ID: 17915228 [TBL] [Abstract][Full Text] [Related]
15. Parallel supercritical fluid chromatography/mass spectrometry system for high-throughput enantioselective optimization and separation. Zeng L; Xu R; Laskar DB; Kassel DB J Chromatogr A; 2007 Oct; 1169(1-2):193-204. PubMed ID: 17900596 [TBL] [Abstract][Full Text] [Related]
16. [Chiral separation of drugs based on macrocyclic antibiotics using HPLC, supercritical fluid chromatography (SFC) and capillary electrochromatography (CEC)]. Dungelová J; Lehotay J; Rojkovicová T; Cizmárik J Ceska Slov Farm; 2003 May; 52(3):119-25. PubMed ID: 12789771 [TBL] [Abstract][Full Text] [Related]
17. Flattened cone 2,8,14,20-tetrakis(L-valinamido)[4]resorcinarene: an enantioselective allosteric receptor in the gas phase. Botta B; Caporuscio F; Subissati D; Tafi A; Botta M; Filippi A; Speranza M Angew Chem Int Ed Engl; 2006 Apr; 45(17):2717-20. PubMed ID: 16502444 [No Abstract] [Full Text] [Related]
18. Effective use of preparative chiral HPLC in a preclinical drug synthesis. Nelson TD; Welch CJ; Rosen JD; Smitrovich JH; Huffman MA; McNamara JM; Mathre DJ Chirality; 2004 Nov; 16(9):609-13. PubMed ID: 15390084 [TBL] [Abstract][Full Text] [Related]
19. New chiral and restricted-access materials containing glycopeptides as selectors for the high-performance liquid chromatographic determination of chiral drugs in biological matrices. Gasparrini F; Cancelliere G; Ciogli A; D'Acquarica I; Misiti D; Villani C J Chromatogr A; 2008 May; 1191(1-2):205-13. PubMed ID: 18096178 [TBL] [Abstract][Full Text] [Related]
20. [Capillary electrochromatography for chiral separation and purity testing of pharmaceutical drug substances]. Gazdag M; Takács T; Szóllósi E Acta Pharm Hung; 2003; 73(1):23-8. PubMed ID: 12891896 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]