BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 12227573)

  • 1. In situ FTIR studies on the effect of temperature on the electro-oxidation of small organic molecules at the Ru(0001) electrode.
    Lin WF; Christensen PA
    Faraday Discuss; 2002; (121):267-84; discussion 331-64. PubMed ID: 12227573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of the specific adsorption of anion on the reactivity of the Ru(0001) surface towards CO adsorption and oxidation: in situ FTIRS studies.
    Jin JM; Lin WF; Christensen PA
    Phys Chem Chem Phys; 2008 Jul; 10(25):3774-83. PubMed ID: 18563238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New insights into methanol and formic acid electro-oxidation on Pt: Simultaneous DEMS and ATR-SEIRAS study under well-defined flow conditions and simulations of CO spectra.
    Wang H; Abruña HD
    J Chem Phys; 2022 Jan; 156(3):034703. PubMed ID: 35065580
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrocatalytic mechanism and kinetics of SOMs oxidation on ordered PtPb and PtBi intermetallic compounds: DEMS and FTIRS study.
    Wang H; Alden L; Disalvo FJ; Abruña HD
    Phys Chem Chem Phys; 2008 Jul; 10(25):3739-51. PubMed ID: 18563235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electro-oxidation of formic acid catalyzed by FePt nanoparticles.
    Chen W; Kim J; Sun S; Chen S
    Phys Chem Chem Phys; 2006 Jun; 8(23):2779-86. PubMed ID: 16763712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrocatalytic oxidation and adsorption rate of methanol at Pt stepped single-crystal electrodes and effect of Ru step decoration: a DEMS study.
    Mostafa E; Abd-El-Latif AE; Baltruschat H
    Chemphyschem; 2014 Jul; 15(10):2029-43. PubMed ID: 24986467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electro-catalytic oxidation of formaldehyde on copper electrode: a new kinetics model.
    Hasanzadeh M; Shadjou N
    Acta Chim Slov; 2013; 60(1):184-9. PubMed ID: 23841350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of in-situ attenuated total reflection-Fourier transform infrared spectroscopy for the understanding of complex reaction mechanism and kinetics: formic acid oxidation on a Pt film electrode at elevated temperatures.
    Chen YX; Ye S; Heinen M; Jusys Z; Osawa M; Behm RJ
    J Phys Chem B; 2006 May; 110(19):9534-44. PubMed ID: 16686500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Implanting Atomic Dispersed Ru in PtNi Colloidal Nanocrystal Clusters for Efficient Catalytic Performance in Electro-oxidation of Liquid Fuels.
    Li B; Yang S; Chen G; Li C; Lv Y; Yang X; Gao D
    Chemistry; 2020 Dec; 26(70):16869-16874. PubMed ID: 32955135
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanistic study of electrocatalytic oxidation of formic acid at platinum in acidic solution by time-resolved surface-enhanced infrared absorption spectroscopy.
    Samjeské G; Miki A; Ye S; Osawa M
    J Phys Chem B; 2006 Aug; 110(33):16559-66. PubMed ID: 16913790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The dual pathway in action: decoupling parallel routes for CO2 production during the oscillatory electro-oxidation of methanol.
    Nagao R; Cantane DA; Lima FH; Varela H
    Phys Chem Chem Phys; 2012 Jun; 14(23):8294-8. PubMed ID: 22395562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formate, an active intermediate for direct oxidation of methanol on pt electrode.
    Chen YX; Miki A; Ye S; Sakai H; Osawa M
    J Am Chem Soc; 2003 Apr; 125(13):3680-1. PubMed ID: 12656581
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissecting the steps of CO₂ reduction: 1. The interaction of CO and CO₂ with γ-Al₂O₃: an in situ FTIR study.
    Szanyi J; Kwak JH
    Phys Chem Chem Phys; 2014 Aug; 16(29):15117-25. PubMed ID: 24934753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reversible potentials for steps in methanol and formic acid oxidation to CO2; adsorption energies of intermediates on the ideal electrocatalyst for methanol oxidation and CO2 reduction.
    Anderson AB; Asiri HA
    Phys Chem Chem Phys; 2014 Jun; 16(22):10587-99. PubMed ID: 24741672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The roles of step-site and zinc in surface chemistry of formic acid on clean and Zn-modified Cu(111) and Cu(997) surfaces studied by HR-XPS, TPD, and IRAS.
    Shiozawa Y; Koitaya T; Mukai K; Yoshimoto S; Yoshinobu J
    J Chem Phys; 2020 Jan; 152(4):044703. PubMed ID: 32007070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ surface-enhanced Raman spectroscopic study of formic acid electrooxidation on spontaneously deposited platinum on gold.
    Muralidharan R; McIntosh M; Li X
    Phys Chem Chem Phys; 2013 Jun; 15(24):9716-25. PubMed ID: 23674096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formic acid electrooxidation on Pd in acidic solutions studied by surface-enhanced infrared absorption spectroscopy.
    Miyake H; Okada T; Samjeské G; Osawa M
    Phys Chem Chem Phys; 2008 Jul; 10(25):3662-9. PubMed ID: 18563227
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoinduced surface dynamics of CO adsorbed on a platinum electrode.
    Noguchi H; Okada T; Uosaki K
    J Phys Chem B; 2006 Aug; 110(31):15055-8. PubMed ID: 16884215
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Remarkable MnO
    Ma C; Sun S; Lu H; Hao Z; Yang C; Wang B; Chen C; Song M
    J Hazard Mater; 2021 Jul; 414():125542. PubMed ID: 33667806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methanol oxidation on a Pt(111)-OH/O surface.
    Kuzume A; Mochiduki Y; Tsuchida T; Ito M
    Phys Chem Chem Phys; 2008 Apr; 10(16):2175-9. PubMed ID: 18404223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.