These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

50 related articles for article (PubMed ID: 12228403)

  • 1. Role of the Differentiation of Root Epidermal Cells in Nod Factor (from Rhizobium meliloti)-Induced Root-Hair Depolarization of Medicago sativa.
    Kurkdjian AC
    Plant Physiol; 1995 Mar; 107(3):783-790. PubMed ID: 12228403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mycorrhizal lipochitinoligosaccharides (LCOs) depolarize root hairs of Medicago truncatula.
    Hürter AL; Fort S; Cottaz S; Hedrich R; Geiger D; Roelfsema MRG
    PLoS One; 2018; 13(5):e0198126. PubMed ID: 29851976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The small GTPase ROP6 interacts with NFR5 and is involved in nodule formation in Lotus japonicus.
    Ke D; Fang Q; Chen C; Zhu H; Chen T; Chang X; Yuan S; Kang H; Ma L; Hong Z; Zhang Z
    Plant Physiol; 2012 May; 159(1):131-43. PubMed ID: 22434040
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel ARID DNA-binding protein interacts with SymRK and is expressed during early nodule development in Lotus japonicus.
    Zhu H; Chen T; Zhu M; Fang Q; Kang H; Hong Z; Zhang Z
    Plant Physiol; 2008 Sep; 148(1):337-47. PubMed ID: 18633121
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The distributional changes and role of microtubules in Nod factor-challenged Medicago sativa root hairs.
    Weerasinghe RR; Collings DA; Johannes E; Allen NS
    Planta; 2003 Dec; 218(2):276-87. PubMed ID: 12942325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The mode of action of cell wall-degrading enzymes and their interference with Nod factor signalling in Medicago sativa root hairs.
    Carden DE; Felle HH
    Planta; 2003 Apr; 216(6):993-1002. PubMed ID: 12687367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sym2 of Pea Is Involved in a Nodulation Factor-Perception Mechanism That Controls the Infection Process in the Epidermis.
    Geurts R; Heidstra R; Hadri AE; Downie JA; Franssen H; Van Kammen A; Bisseling T
    Plant Physiol; 1997 Oct; 115(2):351-359. PubMed ID: 12223813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rhizobium nod factor perception and signalling.
    Geurts R; Bisseling T
    Plant Cell; 2002; 14 Suppl(Suppl):S239-49. PubMed ID: 12045280
    [No Abstract]   [Full Text] [Related]  

  • 9. How alfalfa root hairs discriminate between Nod factors and oligochitin elicitors.
    Felle HH; Kondorosi E; Kondorosi A; Schultze M
    Plant Physiol; 2000 Nov; 124(3):1373-80. PubMed ID: 11080312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissection of nodulation signaling using pea mutants defective for calcium spiking induced by nod factors and chitin oligomers.
    Walker SA; Viprey V; Downie JA
    Proc Natl Acad Sci U S A; 2000 Nov; 97(24):13413-8. PubMed ID: 11078515
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic analysis of calcium spiking responses in nodulation mutants of Medicago truncatula.
    Wais RJ; Galera C; Oldroyd G; Catoira R; Penmetsa RV; Cook D; Gough C; Denarié J; Long SR
    Proc Natl Acad Sci U S A; 2000 Nov; 97(24):13407-12. PubMed ID: 11078514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of early nodulin genes in alfalfa mycorrhizae indicates that signal transduction pathways used in forming arbuscular mycorrhizae and Rhizobium-induced nodules may be conserved.
    van Rhijn P; Fang Y; Galili S; Shaul O; Atzmon N; Wininger S; Eshed Y; Lum M; Li Y; To V; Fujishige N; Kapulnik Y; Hirsch AM
    Proc Natl Acad Sci U S A; 1997 May; 94(10):5467-72. PubMed ID: 11038545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Four genes of Medicago truncatula controlling components of a nod factor transduction pathway.
    Catoira R; Galera C; de Billy F; Penmetsa RV; Journet EP; Maillet F; Rosenberg C; Cook D; Gough C; Dénarié J
    Plant Cell; 2000 Sep; 12(9):1647-66. PubMed ID: 11006338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular basis of symbiotic promiscuity.
    Perret X; Staehelin C; Broughton WJ
    Microbiol Mol Biol Rev; 2000 Mar; 64(1):180-201. PubMed ID: 10704479
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elevation of the cytosolic free [Ca2+] is indispensable for the transduction of the Nod factor signal in alfalfa.
    Felle HH; Kondorosi E; Kondorosi A; Schultze M
    Plant Physiol; 1999 Sep; 121(1):273-80. PubMed ID: 10482683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nodule-inducing activity of synthetic Sinorhizobium meliloti nodulation factors and related lipo-chitooligosaccharides on alfalfa. Importance of the acyl chain structure.
    Demont-Caulet N; Maillet F; Tailler D; Jacquinet JC; Promé JC; Nicolaou KC; Truchet G; Beau JM; Dénarié J
    Plant Physiol; 1999 May; 120(1):83-92. PubMed ID: 10318686
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rhizobium nod factor signaling. Evidence for a g protein-mediated transduction mechanism.
    Pingret JL; Journet EP; Barker DG
    Plant Cell; 1998 May; 10(5):659-72. PubMed ID: 9596628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rearrangement of actin microfilaments in plant root hairs responding to rhizobium etli nodulation signals.
    Crdenas L; Vidali L; Domnguez J; Prez H; Snchez F; Hepler PK; Quinto C
    Plant Physiol; 1998 Mar; 116(3):871-7. PubMed ID: 9501120
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rhizobium symbiosis: nod factors in perspective.
    Long SR
    Plant Cell; 1996 Oct; 8(10):1885-98. PubMed ID: 8914326
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.