BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 12228458)

  • 21. Violaxanthin and diadinoxanthin de-epoxidation in various model lipid systems.
    Latowski D; Goss R; Bojko M; Strzałka K
    Acta Biochim Pol; 2012; 59(1):101-3. PubMed ID: 22428134
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [The current concepts of functional role of carotenoids in the eukaryotic chloroplasts].
    Ladygin VG; Shirshikova GN
    Zh Obshch Biol; 2006; 67(3):163-89. PubMed ID: 16862869
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of light quality on CO2 assimilation, chlorophyll-fluorescence quenching, expression of Calvin cycle genes and carbohydrate accumulation in Cucumis sativus.
    Wang H; Gu M; Cui J; Shi K; Zhou Y; Yu J
    J Photochem Photobiol B; 2009 Jul; 96(1):30-7. PubMed ID: 19410482
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparative ecophysiology of the xanthophyll cycle in six marine phytoplanktonic species.
    Dimier C; Giovanni S; Ferdinando T; Brunet C
    Protist; 2009 Aug; 160(3):397-411. PubMed ID: 19375387
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The xanthophyll cycle pigments, violaxanthin and zeaxanthin, modulate molecular organization of the photosynthetic antenna complex LHCII.
    Janik E; Bednarska J; Zubik M; Sowinski K; Luchowski R; Grudzinski W; Matosiuk D; Gruszecki WI
    Arch Biochem Biophys; 2016 Feb; 592():1-9. PubMed ID: 26773208
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The xanthophyll cycle pigments in Secale cereale leaves under combined Cd and high light stress conditions.
    Janik E; Grudziński W; Gruszecki WI; Krupa Z
    J Photochem Photobiol B; 2008 Jan; 90(1):47-52. PubMed ID: 18077178
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The xanthophyll cycle pool size controls the kinetics of non-photochemical quenching in Arabidopsis thaliana.
    Johnson MP; Davison PA; Ruban AV; Horton P
    FEBS Lett; 2008 Jan; 582(2):262-6. PubMed ID: 18083127
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Photosynthetic responses of tree seedlings in grass and under shrubs in early-successional tropical old fields, Costa Rica.
    Loik ME; Holl KD
    Oecologia; 2001 Mar; 127(1):40-50. PubMed ID: 28547168
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Subunit composition and pigmentation of fucoxanthin-chlorophyll proteins in diatoms: evidence for a subunit involved in diadinoxanthin and diatoxanthin binding.
    Beer A; Gundermann K; Beckmann J; Büchel C
    Biochemistry; 2006 Oct; 45(43):13046-53. PubMed ID: 17059221
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dynamic properties of the minor chlorophyll a/b binding proteins of photosystem II, an in vitro model for photoprotective energy dissipation in the photosynthetic membrane of green plants.
    Ruban AV; Young AJ; Horton P
    Biochemistry; 1996 Jan; 35(3):674-8. PubMed ID: 8547246
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Photoinhibition and D1 Protein Degradation in Peas Acclimated to Different Growth Irradiances.
    Aro EM; McCaffery S; Anderson JM
    Plant Physiol; 1993 Nov; 103(3):835-843. PubMed ID: 12231982
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanism and regulation of the violaxanthin cycle: the role of antenna proteins and membrane lipids.
    Jahns P; Latowski D; Strzalka K
    Biochim Biophys Acta; 2009 Jan; 1787(1):3-14. PubMed ID: 18976630
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The chloroplast protein LTO1/AtVKOR is involved in the xanthophyll cycle and the acceleration of D1 protein degradation.
    Yu ZB; Lu Y; Du JJ; Peng JJ; Wang XY
    J Photochem Photobiol B; 2014 Jan; 130():68-75. PubMed ID: 24300993
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of a nonphotochemical quenching-deficient Arabidopsis mutant possessing an intact PsbS protein, xanthophyll cycle and lumen acidification.
    Kalituho L; Grasses T; Graf M; Rech J; Jahns P
    Planta; 2006 Feb; 223(3):532-41. PubMed ID: 16136330
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The peculiar NPQ regulation in the stramenopile Phaeomonas sp. challenges the xanthophyll cycle dogma.
    Berne N; Fabryova T; Istaz B; Cardol P; Bailleul B
    Biochim Biophys Acta Bioenerg; 2018 Jul; 1859(7):491-500. PubMed ID: 29625087
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Carotenoid-dependent oligomerization of the major chlorophyll a/b light harvesting complex of photosystem II of plants.
    Ruban AV; Phillip D; Young AJ; Horton P
    Biochemistry; 1997 Jun; 36(25):7855-9. PubMed ID: 9201929
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Artificially increased ascorbate content affects zeaxanthin formation but not thermal energy dissipation or degradation of antioxidants during cold-induced photooxidative stress in maize leaves.
    Leipner J; Stamp P; Fracheboud Y
    Planta; 2000 May; 210(6):964-9. PubMed ID: 10872229
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dynamics of violaxanthin and lutein epoxide xanthophyll cycles in Lauraceae tree species under field conditions.
    Esteban R; Jiménez ET; Jiménez MS; Morales D; Hormaetxe K; Becerril JM; García-Plazaola JI
    Tree Physiol; 2007 Oct; 27(10):1407-14. PubMed ID: 17669731
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhanced Employment of the Xanthophyll Cycle and Thermal Energy Dissipation in Spinach Exposed to High Light and N Stress.
    Verhoeven AS; Demmig-Adams B; Adams III WW
    Plant Physiol; 1997 Mar; 113(3):817-824. PubMed ID: 12223645
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Leaf orientation and the response of the xanthophyll cycle to incident light.
    Adams WW; Volk M; Hoehn A; Demmig-Adams B
    Oecologia; 1992 Jun; 90(3):404-410. PubMed ID: 28313528
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.