These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 12228520)

  • 1. Purification and Developmental Analysis of an Extracellular Proteinase from Young Leaves of Soybean.
    Huangpu J; Graham JS
    Plant Physiol; 1995 Jul; 108(3):969-974. PubMed ID: 12228520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Purification and Developmental Analysis of a Metalloendoproteinase from the Leaves of Glycine max.
    Graham JS; Xiong J; Gillikin JW
    Plant Physiol; 1991 Oct; 97(2):786-92. PubMed ID: 16668467
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purification and molecular analysis of an extracellular gamma-glutamyl hydrolase present in young tissues of the soybean plant.
    Huangpu J; Pak JH; Graham MC; Rickle SA; Graham JS
    Biochem Biophys Res Commun; 1996 Nov; 228(1):1-6. PubMed ID: 8912628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell Walls of Phaseolus vulgaris Leaves Contain the Azocoll-Digesting Proteinase.
    van der Wilden W; Segers JH; Chrispeels MJ
    Plant Physiol; 1983 Nov; 73(3):576-8. PubMed ID: 16663261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purification and characterization of major extracellular proteinases from Trichophyton rubrum.
    Asahi M; Lindquist R; Fukuyama K; Apodaca G; Epstein WL; McKerrow JH
    Biochem J; 1985 Nov; 232(1):139-44. PubMed ID: 3910025
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phospholipase D from soybean (Glycine max L.) suspension-cultured cells: purification, structural and enzymatic properties.
    Abousalham A; Teissere M; Gardies AM; Verger R; Noat G
    Plant Cell Physiol; 1995 Sep; 36(6):989-96. PubMed ID: 8528610
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Azocoll-digesting Proteinases in Soybean Leaves: Characteristics and Changes during Leaf Maturation and Senescence.
    Ragster LV; Chrispeels MJ
    Plant Physiol; 1979 Nov; 64(5):857-62. PubMed ID: 16661069
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hemoglobin-digesting Acid Proteinases in Soybean Leaves: CHARACTERISTICS AND CHANGES DURING LEAF MATURATION AND SENESCENCE.
    Ragster LV; Chrispeels MJ
    Plant Physiol; 1981 Jan; 67(1):110-4. PubMed ID: 16661607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Purification of the Major Soybean Leaf Acid Phosphatase That Is Increased by Seed-Pod Removal.
    Staswick PE; Papa C; Huang JF; Rhee Y
    Plant Physiol; 1994 Jan; 104(1):49-57. PubMed ID: 12232060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of a chelator-resistant proteinase from Thermus strain Rt4A2.
    Freeman SA; Peek K; Prescott M; Daniel R
    Biochem J; 1993 Oct; 295 ( Pt 2)(Pt 2):463-9. PubMed ID: 8240244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Purification and properties of transglutaminase from soybean (Glycine max) leaves.
    Kang H; Cho YD
    Biochem Biophys Res Commun; 1996 Jun; 223(2):288-92. PubMed ID: 8670274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Purification and Properties of a Unique Nucleotide Pyrophosphatase/Phosphodiesterase I That Accumulates in Soybean Leaves in Response to Fruit Removal.
    Salvucci ME; Crafts-Brandner SJ
    Plant Physiol; 1995 Jul; 108(3):1269-1276. PubMed ID: 12228543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purification and characterization of monomeric lysine decarboxylase from soybean (Glycine max) axes.
    Kim HS; Kim BH; Cho YD
    Arch Biochem Biophys; 1998 Jun; 354(1):40-6. PubMed ID: 9633596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purification and characterization of two forms of a high-molecular-weight cysteine proteinase (porphypain) from Porphyromonas gingivalis.
    Ciborowski P; Nishikata M; Allen RD; Lantz MS
    J Bacteriol; 1994 Aug; 176(15):4549-57. PubMed ID: 8045885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of Helicoverpa armigera gut proteinases and their interaction with proteinase inhibitors using gel X-ray film contact print technique.
    Harsulkar AM; Giri AP; Gupta VS; Sainani MN; Deshpande VV; Patankar AG; Ranjekar PK
    Electrophoresis; 1998 Jun; 19(8-9):1397-402. PubMed ID: 9694289
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purification and characterisation of a novel 34,000-Mr cell-associated proteinase from the dermatophyte Trichophyton rubrum.
    Lambkin I; Hamilton AJ; Hay RJ
    FEMS Immunol Med Microbiol; 1996 Feb; 13(2):131-40. PubMed ID: 8731021
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Partial purification and characterization of endoproteinases from senescing barley leaves.
    Miller BL; Huffaker RC
    Plant Physiol; 1981 Oct; 68(4):930-6. PubMed ID: 16662028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Purification and characterization of a metallo-endoproteinase from mouse kidney.
    Beynon RJ; Shannon JD; Bond JS
    Biochem J; 1981 Dec; 199(3):591-8. PubMed ID: 7041888
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purification and N-terminal amino acid sequence determination of the cell-wall-bound proteinase from Lactobacillus paracasei subsp. paracasei.
    Naes H; Nissen-Meyer J
    J Gen Microbiol; 1992 Feb; 138(2):313-8. PubMed ID: 1564442
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Purification and partial amino acid sequence of a wound-inducible, developmentally regulated anionic peroxidase from soybean leaves.
    Diehn SH; Burkhart W; Graham JS
    Biochem Biophys Res Commun; 1993 Sep; 195(2):928-34. PubMed ID: 8396932
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.