These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 12228574)

  • 1. Heat Shock Disrupts Cap and Poly(A) Tail Function during Translation and Increases mRNA Stability of Introduced Reporter mRNA.
    Gallie DR; Caldwell C; Pitto L
    Plant Physiol; 1995 Aug; 108(4):1703-1713. PubMed ID: 12228574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Translational control during recovery from heat shock in the absence of heat shock proteins.
    Gallie DR; Pitto L
    Biochem Biophys Res Commun; 1996 Oct; 227(2):462-7. PubMed ID: 8878537
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic proofreading scanning models for eukaryotic translational initiation: the cap and poly(A) tail dependency of translation.
    Bi X; Goss DJ
    J Theor Biol; 2000 Nov; 207(2):145-57. PubMed ID: 11034826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. m7GpppG cap dependence for efficient translation of Drosophila 70-kDa heat-shock-protein (Hsp70) mRNA.
    Song HJ; Gallie DR; Duncan RF
    Eur J Biochem; 1995 Sep; 232(3):778-88. PubMed ID: 7588716
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The histone 3'-terminal stem-loop is necessary for translation in Chinese hamster ovary cells.
    Gallie DR; Lewis NJ; Marzluff WF
    Nucleic Acids Res; 1996 May; 24(10):1954-62. PubMed ID: 8657580
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of poly(A)-binding protein is upregulated during recovery from heat shock in HeLa cells.
    Ma S; Bhattacharjee RB; Bag J
    FEBS J; 2009 Jan; 276(2):552-70. PubMed ID: 19087191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RNase Activity Decreases following a Heat Shock in Wheat Leaves and Correlates with Its Posttranslational Modification.
    Chang SC; Gallie DR
    Plant Physiol; 1997 Apr; 113(4):1253-1263. PubMed ID: 12223673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of the Leader Sequence during Thermal Repression of Translation in Maize, Tobacco, and Carrot Protoplasts.
    Pitto L; Gallie DR; Walbot V
    Plant Physiol; 1992 Dec; 100(4):1827-33. PubMed ID: 16653204
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequence and structure determinants of Drosophila Hsp70 mRNA translation: 5'UTR secondary structure specifically inhibits heat shock protein mRNA translation.
    Hess MA; Duncan RF
    Nucleic Acids Res; 1996 Jun; 24(12):2441-9. PubMed ID: 8710519
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acid shock accumulation of sigma S in Salmonella enterica involves increased translation, not regulated degradation.
    Audia JP; Foster JW
    J Mol Microbiol Biotechnol; 2003; 5(1):17-28. PubMed ID: 12673058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of 5'-leader length, secondary structure and PABP concentration on cap and poly(A) tail function during translation in Xenopus oocytes.
    Gallie DR; Ling J; Niepel M; Morley SJ; Pain VM
    Nucleic Acids Res; 2000 Aug; 28(15):2943-53. PubMed ID: 10908358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preferential translation mediated by Hsp81-3 5'-UTR during heat shock involves ribosome entry at the 5'-end rather than an internal site in Arabidopsis suspension cells.
    Matsuura H; Shinmyo A; Kato K
    J Biosci Bioeng; 2008 Jan; 105(1):39-47. PubMed ID: 18295718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The 5'-leader of tobacco mosaic virus promotes translation through enhanced recruitment of eIF4F.
    Gallie DR
    Nucleic Acids Res; 2002 Aug; 30(15):3401-11. PubMed ID: 12140325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chaperone hsp27 inhibits translation during heat shock by binding eIF4G and facilitating dissociation of cap-initiation complexes.
    Cuesta R; Laroia G; Schneider RJ
    Genes Dev; 2000 Jun; 14(12):1460-70. PubMed ID: 10859165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic interplay between antagonistic pathways controlling the sigma 32 level in Escherichia coli.
    Morita MT; Kanemori M; Yanagi H; Yura T
    Proc Natl Acad Sci U S A; 2000 May; 97(11):5860-5. PubMed ID: 10801971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Initiation-mediated mRNA decay in yeast affects heat-shock mRNAs, and works through decapping and 5'-to-3' hydrolysis.
    Heikkinen HL; Llewellyn SA; Barnes CA
    Nucleic Acids Res; 2003 Jul; 31(14):4006-16. PubMed ID: 12853617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distinct recruitment of human eIF4E isoforms to processing bodies and stress granules.
    Frydryskova K; Masek T; Borcin K; Mrvova S; Venturi V; Pospisek M
    BMC Mol Biol; 2016 Aug; 17(1):21. PubMed ID: 27578149
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [The 5' untranslated region of the maize alcohol dehydrogenase gene provides efficient translation of mRNA in plants under stress conditions].
    Mardanova ES; Zamchuk LA; Ravin NV
    Mol Biol (Mosk); 2007; 41(6):1002-8. PubMed ID: 18318118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lariat capping as a tool to manipulate the 5' end of individual yeast mRNA species in vivo.
    Krogh N; Pietschmann M; Schmid M; Jensen TH; Nielsen H
    RNA; 2017 May; 23(5):683-695. PubMed ID: 28159804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visualizing mRNA expression in plant protoplasts: factors influencing efficient mRNA uptake and translation.
    Gallie DR; Lucas WJ; Walbot V
    Plant Cell; 1989 Mar; 1(3):301-11. PubMed ID: 2535505
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.