These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 12228726)

  • 21. Electrostatic interaction between charybdotoxin and a tetrameric mutant of Shaker K(+) channels.
    Thompson J; Begenisich T
    Biophys J; 2000 May; 78(5):2382-91. PubMed ID: 10777734
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Can Shaker potassium channels be locked in the deactivated state?
    Yang Y; Yan Y; Sigworth FJ
    J Gen Physiol; 2004 Aug; 124(2):163-71. PubMed ID: 15277577
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Localization of the extracellular end of the voltage sensor S4 in a potassium channel.
    Elinder F; Arhem P; Larsson HP
    Biophys J; 2001 Apr; 80(4):1802-9. PubMed ID: 11259293
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Elucidation of biophysical and biological properties of voltage-gated potassium channels.
    Baldwin TJ; Isacoff E; Li M; Lopez GA; Sheng M; Tsaur ML; Yan YN; Jan LY
    Cold Spring Harb Symp Quant Biol; 1992; 57():491-9. PubMed ID: 1339685
    [No Abstract]   [Full Text] [Related]  

  • 25. Mechanism of charybdotoxin block of a voltage-gated K+ channel.
    Goldstein SA; Miller C
    Biophys J; 1993 Oct; 65(4):1613-9. PubMed ID: 7506068
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Role of hydrophobic and ionic forces in the movement of S4 of the Shaker potassium channel.
    Elliott DJ; Neale EJ; Munsey TS; Bannister JP; Sivaprasadarao A
    Mol Membr Biol; 2012 Dec; 29(8):321-32. PubMed ID: 22881396
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Local movement in the S2 region of the voltage-gated potassium channel hKv2.1 studied using cysteine mutagenesis.
    Milligan CJ; Wray D
    Biophys J; 2000 Apr; 78(4):1852-61. PubMed ID: 10733965
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Periodic perturbations in Shaker K+ channel gating kinetics by deletions in the S3-S4 linker.
    Gonzalez C; Rosenman E; Bezanilla F; Alvarez O; Latorre R
    Proc Natl Acad Sci U S A; 2001 Aug; 98(17):9617-23. PubMed ID: 11493701
    [TBL] [Abstract][Full Text] [Related]  

  • 29. External TEA block of shaker K+ channels is coupled to the movement of K+ ions within the selectivity filter.
    Thompson J; Begenisich T
    J Gen Physiol; 2003 Aug; 122(2):239-46. PubMed ID: 12885878
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Kinetic relationship between the voltage sensor and the activation gate in spHCN channels.
    Bruening-Wright A; Elinder F; Larsson HP
    J Gen Physiol; 2007 Jul; 130(1):71-81. PubMed ID: 17591986
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A proton pore in a potassium channel voltage sensor reveals a focused electric field.
    Starace DM; Bezanilla F
    Nature; 2004 Feb; 427(6974):548-53. PubMed ID: 14765197
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The interaction of Na(+) and K(+) in the pore of cyclic nucleotide-gated channels.
    Gamel K; Torre V
    Biophys J; 2000 Nov; 79(5):2475-93. PubMed ID: 11053124
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Voltage-sensing arginines in a potassium channel permeate and occlude cation-selective pores.
    Tombola F; Pathak MM; Isacoff EY
    Neuron; 2005 Feb; 45(3):379-88. PubMed ID: 15694325
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Unilateral exposure of Shaker B potassium channels to hyperosmolar solutions.
    Starkus JG; Schlief T; Rayner MD; Heinemann SH
    Biophys J; 1995 Sep; 69(3):860-72. PubMed ID: 8519986
    [TBL] [Abstract][Full Text] [Related]  

  • 35. K+ channels lacking the 'tetramerization' domain: implications for pore structure.
    Kobertz WR; Miller C
    Nat Struct Biol; 1999 Dec; 6(12):1122-5. PubMed ID: 10581553
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evidence that the S6 segment of the Shaker voltage-gated K+ channel comprises part of the pore.
    Lopez GA; Jan YN; Jan LY
    Nature; 1994 Jan; 367(6459):179-82. PubMed ID: 8114915
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular movement of the voltage sensor in a K channel.
    Broomand A; Männikkö R; Larsson HP; Elinder F
    J Gen Physiol; 2003 Dec; 122(6):741-8. PubMed ID: 14610021
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inwardly rectifying current-voltage relationship of small-conductance Ca2+-activated K+ channels rendered by intracellular divalent cation blockade.
    Soh H; Park CS
    Biophys J; 2001 May; 80(5):2207-15. PubMed ID: 11325723
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Conserved gating hinge in ligand- and voltage-dependent K+ channels.
    Magidovich E; Yifrach O
    Biochemistry; 2004 Oct; 43(42):13242-7. PubMed ID: 15491131
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular mechanism of voltage sensor movements in a potassium channel.
    Elliott DJ; Neale EJ; Aziz Q; Dunham JP; Munsey TS; Hunter M; Sivaprasadarao A
    EMBO J; 2004 Dec; 23(24):4717-26. PubMed ID: 15565171
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.