These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 12229998)

  • 1. A latent autoregressive model for longitudinal binary data subject to informative missingness.
    Albert PS; Follmann DA; Wang SA; Suh EB
    Biometrics; 2002 Sep; 58(3):631-42. PubMed ID: 12229998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A transitional model for longitudinal binary data subject to nonignorable missing data.
    Albert PS
    Biometrics; 2000 Jun; 56(2):602-8. PubMed ID: 10877323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Random effects and latent processes approaches for analyzing binary longitudinal data with missingness: a comparison of approaches using opiate clinical trial data.
    Albert PS; Follmann DA
    Stat Methods Med Res; 2007 Oct; 16(5):417-39. PubMed ID: 17656452
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An approximate generalized linear model with random effects for informative missing data.
    Follmann D; Wu M
    Biometrics; 1995 Mar; 51(1):151-68. PubMed ID: 7766771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A joint model for longitudinal and survival data based on an AR(1) latent process.
    Bacci S; Bartolucci F; Pandolfi S
    Stat Methods Med Res; 2018 May; 27(5):1285-1311. PubMed ID: 27587589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of clinical trials for treatment of opiate dependence: what are the possibilities?
    Jain RB
    NIDA Res Monogr; 1992; 128():116-34; discussion 135-6. PubMed ID: 1436010
    [No Abstract]   [Full Text] [Related]  

  • 7. Bayesian informative dropout model for longitudinal binary data with random effects using conditional and joint modeling approaches.
    Chan JS
    Biom J; 2016 May; 58(3):549-69. PubMed ID: 26467236
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mixed effects logistic regression models for longitudinal binary response data with informative drop-out.
    Ten Have TR; Kunselman AR; Pulkstenis EP; Landis JR
    Biometrics; 1998 Mar; 54(1):367-83. PubMed ID: 9544529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three estimators of the probability of opiate use from incomplete data.
    Gross AJ
    NIDA Res Monogr; 1992; 128():82-94; discussion 95-6. PubMed ID: 1436018
    [No Abstract]   [Full Text] [Related]  

  • 10. A selection model for longitudinal binary responses subject to non-ignorable attrition.
    Alfò M; Maruotti A
    Stat Med; 2009 Aug; 28(19):2435-50. PubMed ID: 19424960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing missing data assumptions in longitudinal studies: an example using a smoking cessation trial.
    Yang X; Shoptaw S
    Drug Alcohol Depend; 2005 Mar; 77(3):213-25. PubMed ID: 15734221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of summary measures to adjust for informative missingness in repeated measures data with random effects.
    Wu MC; Follmann DA
    Biometrics; 1999 Mar; 55(1):75-84. PubMed ID: 11318181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A meta-analysis comparing buprenorphine to methadone for treatment of opiate dependence.
    Barnett PG; Rodgers JH; Bloch DA
    Addiction; 2001 May; 96(5):683-90. PubMed ID: 11331027
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Markov transition models for binary repeated measures with ignorable and nonignorable missing values.
    Xiaowei Yang ; Shoptaw S; Kun Nie ; Juanmei Liu ; Belin TR
    Stat Methods Med Res; 2007 Aug; 16(4):347-64. PubMed ID: 17715161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple imputation compared with some informative dropout procedures in the estimation and comparison of rates of change in longitudinal clinical trials with dropouts.
    Ali MW; Siddiqui O
    J Biopharm Stat; 2000 May; 10(2):165-81. PubMed ID: 10803723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Model selection for generalized estimating equations accommodating dropout missingness.
    Shen CW; Chen YH
    Biometrics; 2012 Dec; 68(4):1046-54. PubMed ID: 22463099
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modelling transitional and joint marginal distributions in repeated categorical data.
    Follmann D
    Stat Med; 1994 Mar 15-Apr 15; 13(5-7):467-77. PubMed ID: 8023029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Marginalized transition shared random effects models for longitudinal binary data with nonignorable dropout.
    Lee M; Lee K; Lee J
    Biom J; 2014 Mar; 56(2):230-42. PubMed ID: 24430985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inference methods for saturated models in longitudinal clinical trials with incomplete binary data.
    Song JX
    Pharm Stat; 2006; 5(4):295-304. PubMed ID: 17128429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Bayesian nonparametric approach to analysis of treatment for drug-dependence data.
    Tiwari RC
    NIDA Res Monogr; 1992; 128():70-81. PubMed ID: 1436017
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.