These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

58 related articles for article (PubMed ID: 1223013)

  • 1. Pore flow models and their applicability.
    Sarbolouki MN
    Ion Exch Membr; 1975 Dec; 2(2):117-22. PubMed ID: 1223013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of the "DSPM" model on a titania membrane: measurements of charged and uncharged solute retention, electrokinetic charge, pore size, and water permeability.
    Labbez C; Fievet P; Thomas F; Szymczyk A; Vidonne A; Foissy A; Pagetti P
    J Colloid Interface Sci; 2003 Jun; 262(1):200-11. PubMed ID: 16256596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Factors influencing the transport of short-chain alcohols through mesoporous gamma-alumina membranes.
    Chowdhury SR; Blank DH; ten Elshof JE
    J Phys Chem B; 2005 Dec; 109(47):22141-6. PubMed ID: 16853881
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetics of diffusion and convection in 3.2-A pores. Exact solution by computer simulation.
    Levitt DG
    Biophys J; 1973 Feb; 13(2):186-206. PubMed ID: 4702015
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulations of stable pores in membranes: system size dependence and line tension.
    Tolpekina TV; den Otter WK; Briels WJ
    J Chem Phys; 2004 Oct; 121(16):8014-20. PubMed ID: 15485265
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular simulation of pressure-driven fluid flow in nanoporous membranes.
    Takaba H; Onumata Y; Nakao S
    J Chem Phys; 2007 Aug; 127(5):054703. PubMed ID: 17688353
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intrinsic property measurement of surfactant-templated mesoporous silica films using time-resolved single-molecule imaging.
    Kennard R; DeSisto WJ; Giririjan TP; Mason MD
    J Chem Phys; 2008 Apr; 128(13):134710. PubMed ID: 18397097
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of pore structure of a strong anion-exchange membrane adsorbent under different buffer and salt concentration conditions.
    Tatárová I; Fáber R; Denoyel R; Polakovic M
    J Chromatogr A; 2009 Feb; 1216(6):941-7. PubMed ID: 19117574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrasound attenuation in cylindrical micro-pores: nondestructive porometry of ion-track membranes.
    Gómez Alvarez-Arenas TE; Apel PY; Orelovitch O
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Nov; 55(11):2442-9. PubMed ID: 19049923
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling of polynucleotide translocation through protein pores and nanotubes.
    Kong CY; Muthukumar M
    Electrophoresis; 2002 Aug; 23(16):2697-703. PubMed ID: 12210174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A development of the generalized Spiegler-Kedem-Katchalsky model equations for interactions of hydrated species in transport through polymeric membranes.
    Slezak A; Grzegorczyn S
    Polim Med; 2006; 36(4):43-51. PubMed ID: 17402232
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanistic formalism for membrane transport generated by osmotic and mechanical pressure.
    Kargol M; Kargol A
    Gen Physiol Biophys; 2003 Mar; 22(1):51-68. PubMed ID: 12870701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical and theoretical study on the mechanism of biopolymer translocation process through a nano-pore.
    Alapati S; Fernandes DV; Suh YK
    J Chem Phys; 2011 Aug; 135(5):055103. PubMed ID: 21823734
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast mass transport through carbon nanotube membranes.
    Verweij H; Schillo MC; Li J
    Small; 2007 Dec; 3(12):1996-2004. PubMed ID: 18022891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of pore size, shear rate, and harvest time during the constant permeate flux microfiltration of CHO cell culture supernatant.
    Stressmann M; Moresoli C
    Biotechnol Prog; 2008; 24(4):890-7. PubMed ID: 19194898
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pore nucleation in mechanically stretched bilayer membranes.
    Wang ZJ; Frenkel D
    J Chem Phys; 2005 Oct; 123(15):154701. PubMed ID: 16252963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast mass transport through sub-2-nanometer carbon nanotubes.
    Holt JK; Park HG; Wang Y; Stadermann M; Artyukhin AB; Grigoropoulos CP; Noy A; Bakajin O
    Science; 2006 May; 312(5776):1034-7. PubMed ID: 16709781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chitosan-based controlled porosity osmotic pump for colon-specific delivery system: screening of formulation variables and in vitro investigation.
    Liu H; Yang XG; Nie SF; Wei LL; Zhou LL; Liu H; Tang R; Pan WS
    Int J Pharm; 2007 Mar; 332(1-2):115-24. PubMed ID: 17052871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pressure-induced water flow through model nanopores.
    Goldsmith J; Martens CC
    Phys Chem Chem Phys; 2009 Jan; 11(3):528-33. PubMed ID: 19283270
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.