BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 12230160)

  • 1. Natural inactivation of phosphorus by aluminum in atmospherically acidified water bodies.
    Kopácek J; Ulrich KU; Hejzlar J; Borovec J; Stuchlik E
    Water Res; 2001 Nov; 35(16):3783-90. PubMed ID: 12230160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sediment geochemistry of Al, Fe, and P for two historically acidic, oligotrophic Maine lakes.
    Wilson TA; Norton SA; Lake BA; Amirbahman A
    Sci Total Environ; 2008 Oct; 404(2-3):269-75. PubMed ID: 18760448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Speciation of Al, Fe, and P in recent sediment from three lakes in Maine, USA.
    Norton SA; Coolidge K; Amirbahman A; Bouchard R; Kopácek J; Reinhardt R
    Sci Total Environ; 2008 Oct; 404(2-3):276-83. PubMed ID: 18440053
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Factors affecting phosphate adsorption to aluminum in lake water: implications for lake restoration.
    de Vicente I; Jensen HS; Andersen FØ
    Sci Total Environ; 2008 Jan; 389(1):29-36. PubMed ID: 17900664
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphate adsorption by riverborne clay sediments in a southern-Italy Mediterranean reservoir: Insights from a "natural geo-engineering" experiment.
    Copetti D; Valsecchi L; Tartari G; Mingazzini M; Palumbo MT
    Sci Total Environ; 2023 Jan; 856(Pt 2):159225. PubMed ID: 36206898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. pH dependent dissolution of sediment aluminum in six Danish lakes treated with aluminum.
    Reitzel K; Jensen HS; Egemose S
    Water Res; 2013 Mar; 47(3):1409-20. PubMed ID: 23273857
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lake restoration by dosing aluminum relative to mobile phosphorus in the sediment.
    Reitzel K; Hansen J; Andersen FO; Hansen KS; Jensen HS
    Environ Sci Technol; 2005 Jun; 39(11):4134-40. PubMed ID: 15984792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of acidic deposition on in-lake phosphorus availability: a lesson from lakes recovering from acidification.
    Kopáček J; Hejzlar J; Kaňa J; Norton SA; Stuchlík E
    Environ Sci Technol; 2015 Mar; 49(5):2895-903. PubMed ID: 25660534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A simple model for predicting aluminum bound phosphorus formation and internal loading reduction in lakes after aluminum addition to lake sediment.
    Huser BJ; Pilgrim KM
    Water Res; 2014 Apr; 53():378-85. PubMed ID: 24565172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aging of aluminum/iron-based drinking water treatment residuals in lake water and their association with phosphorus immobilization capability.
    Wang C; Yuan N; Pei Y; Jiang HL
    J Environ Manage; 2015 Aug; 159():178-185. PubMed ID: 26071931
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of pH on phosphorus sorbed from sediments in a river with a natural pH gradient.
    Temporetti P; Beamud G; Nichela D; Baffico G; Pedrozo F
    Chemosphere; 2019 Aug; 228():287-299. PubMed ID: 31035167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variability in phosphorus binding by aluminum in alum treated lakes explained by lake morphology and aluminum dose.
    Huser BJ
    Water Res; 2012 Oct; 46(15):4697-704. PubMed ID: 22763294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Occurrence of phosphorus, iron, aluminum, silica, and calcium in a eutrophic lake during algae bloom sedimentation.
    Li G; Xie F; Zhang J; Wang J; Yang Y; Sun R
    Water Sci Technol; 2016 Sep; 74(6):1266-1273. PubMed ID: 27685957
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aluminum control of phosphorus sorption by lake sediments.
    Kopácek J; Borovec J; Hejzlar J; Ulrich KU; Norton SA; Amirbahman A
    Environ Sci Technol; 2005 Nov; 39(22):8784-9. PubMed ID: 16323777
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ion budgets and sediment-water interactions during the experimental acidification and recovery of Little Rock Lake, Wisconsin.
    Sampson CJ; Brezonik PL
    Environ Sci Technol; 2003 Dec; 37(24):5625-35. PubMed ID: 14717173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment on the effects of aluminum-modified clay in inactivating internal phosphorus in deep eutrophic reservoirs.
    Wang J; Chen J; Chen Q; Yang H; Zeng Y; Yu P; Jin Z
    Chemosphere; 2019 Jan; 215():657-667. PubMed ID: 30347360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of experimental acidification on mobilisation of metals from sediments of limed and non-limed lakes.
    Wällstedt T; Borg H
    Environ Pollut; 2003; 126(3):381-91. PubMed ID: 12963301
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Factors contributing to the internal loading of phosphorus from anoxic sediments in six Maine, USA, lakes.
    Lake BA; Coolidge KM; Norton SA; Amirbahman A
    Sci Total Environ; 2007 Feb; 373(2-3):534-41. PubMed ID: 17234258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Labile aluminium chemistry downstream a limestone treated lake and an acid tributary: effects of warm winters and extreme rainstorms.
    Andersen DO
    Sci Total Environ; 2006 Aug; 366(2-3):739-48. PubMed ID: 16269168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The spatial distribution of phosphorus and their correlations in surface sediments and pore water in Lake Chaohu, China.
    Jiao Y; Yang C; He W; Liu WX; Xu FL
    Environ Sci Pollut Res Int; 2018 Sep; 25(26):25906-25915. PubMed ID: 29961223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.