These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 12230187)

  • 1. Oocysts of Cryptosporidium parvum and model sand surfaces in aqueous solutions: an atomic force microscope (AFM) study.
    Considine RF; Dixon DR; Drummond CJ
    Water Res; 2002 Aug; 36(14):3421-8. PubMed ID: 12230187
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-scale Cryptosporidium/sand interactions in water treatment.
    Tufenkji N; Dixon DR; Considine R; Drummond CJ
    Water Res; 2006 Oct; 40(18):3315-31. PubMed ID: 16979211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupled factors influencing the transport and retention of Cryptosporidium parvum oocysts in saturated porous media.
    Kim HN; Walker SL; Bradford SA
    Water Res; 2010 Feb; 44(4):1213-23. PubMed ID: 19854467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium-Mediated Biophysical Binding of Cryptosporidium parvum Oocysts to Surfaces Is Sensitive to Oocyst Age.
    Sarkhosh T; Zhang XF; Jellison KL; Jedlicka SS
    Appl Environ Microbiol; 2019 Sep; 85(17):. PubMed ID: 31253676
    [No Abstract]   [Full Text] [Related]  

  • 5. Deposition of Cryptosporidium parvum oocysts in porous media: a synthesis of attachment efficiencies measured under varying environmental conditions.
    Park Y; Atwill ER; Hou L; Packman AI; Harter T
    Environ Sci Technol; 2012 Sep; 46(17):9491-500. PubMed ID: 22861686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pseudo-Second-Order Calcium-Mediated Cryptosporidium parvum Oocyst Attachment to Environmental Biofilms.
    Luo X; Jedlicka S; Jellison K
    Appl Environ Microbiol; 2017 Jan; 83(1):. PubMed ID: 27793825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of organic matter on the transport of Cryptosporidium parvum oocysts in a ferric oxyhydroxide-coated quartz sand saturated porous medium.
    Abudalo RA; Ryan JN; Harvey RW; Metge DW; Landkamer L
    Water Res; 2010 Feb; 44(4):1104-13. PubMed ID: 19853880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of organic carbon loading, sediment associated metal oxide content and sediment grain size distributions upon Cryptosporidium parvum removal during riverbank filtration operations, Sonoma County, CA.
    Metge DW; Harvey RW; Aiken GR; Anders R; Lincoln G; Jasperse J
    Water Res; 2010 Feb; 44(4):1126-37. PubMed ID: 20116824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adhesion kinetics of viable Cryptosporidium parvum oocysts to quartz surfaces.
    Kuznar ZA; Elimelech M
    Environ Sci Technol; 2004 Dec; 38(24):6839-45. PubMed ID: 15669347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of the interaction force between Cryptosporidium parvum oocysts and solid surfaces.
    Byrd TL; Walz JY
    Langmuir; 2007 Jul; 23(14):7475-83. PubMed ID: 17555335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transport and fate of Cryptosporidium parvum oocysts in intermittent sand filters.
    Logan AJ; Stevik TK; Siegrist RL; Rønn RM
    Water Res; 2001 Dec; 35(18):4359-69. PubMed ID: 11763038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Composition and conformation of Cryptosporidium parvum oocyst wall surface macromolecules and their effect on adhesion kinetics of oocysts on quartz surface.
    Liu Y; Kuhlenschmidt MS; Kuhlenschmidt TB; Nguyen TH
    Biomacromolecules; 2010 Aug; 11(8):2109-15. PubMed ID: 20690718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biotin- and glycoprotein-coated microspheres: potential surrogates for studying filtration of cryptosporidium parvum in porous media.
    Pang L; Nowostawska U; Weaver L; Hoffman G; Karmacharya A; Skinner A; Karki N
    Environ Sci Technol; 2012 Nov; 46(21):11779-87. PubMed ID: 22978441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of NOM and biofilm on the removal of Cryptosporidium parvum oocysts in rapid filters.
    Dai X; Hozalski RM
    Water Res; 2002 Aug; 36(14):3523-32. PubMed ID: 12230198
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Association of Cryptosporidium parvum with suspended particles: impact on oocyst sedimentation.
    Searcy KE; Packman AI; Atwill ER; Harter T
    Appl Environ Microbiol; 2005 Feb; 71(2):1072-8. PubMed ID: 15691968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction force profiles between Cryptosporidium parvum oocysts and silica surfaces.
    Byrd TL; Walz JY
    Environ Sci Technol; 2005 Dec; 39(24):9574-82. PubMed ID: 16475338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of surface proteins in the deposition kinetics of Cryptosporidium parvum oocysts.
    Kuznar ZA; Elimelech M
    Langmuir; 2005 Jan; 21(2):710-6. PubMed ID: 15641844
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of sediment-associated extractable metals, degree of sediment grain sorting, and dissolved organic carbon upon Cryptosporidium parvum removal and transport within riverbank filtration sediments, Sonoma County, California.
    Metge DW; Harvey RW; Aiken GR; Anders R; Lincoln G; Jasperse J; Hill MC
    Environ Sci Technol; 2011 Jul; 45(13):5587-95. PubMed ID: 21634424
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial distributions of Cryptosporidium oocysts in porous media: evidence for dual mode deposition.
    Tufenkji N; Elimelech M
    Environ Sci Technol; 2005 May; 39(10):3620-9. PubMed ID: 15952366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fate of Cryptosporidium parvum oocysts within soil, water, and plant environment.
    McLaughlin SJ; Kalita PK; Kuhlenschmidt MS
    J Environ Manage; 2013 Dec; 131():121-8. PubMed ID: 24157412
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.