These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 12231415)

  • 1. Stochastic simulations of remodeling applied to a two-dimensional trabecular bone structure.
    Tabor Z; Rokita E
    Bone; 2002 Sep; 31(3):413-7. PubMed ID: 12231415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of changes in trabecular bone architecture and mechanical properties of minipig vertebrae by three-dimensional magnetic resonance microimaging and finite element modeling.
    Borah B; Dufresne TE; Cockman MD; Gross GJ; Sod EW; Myers WR; Combs KS; Higgins RE; Pierce SA; Stevens ML
    J Bone Miner Res; 2000 Sep; 15(9):1786-97. PubMed ID: 10976998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of trabecular bone architecture in young and old bones.
    Tabor Z; Rokita E
    Med Phys; 2000 May; 27(5):1165-73. PubMed ID: 10841424
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stochastic predictors from the DXA scans of human lumbar vertebrae are correlated with the microarchitecture parameters of trabecular bone.
    Dong XN; Pinninti R; Tvinnereim A; Lowe T; Di Paolo D; Shirvaikar M
    J Biomech; 2015 Sep; 48(12):2968-75. PubMed ID: 26300404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-resolution magnetic resonance imaging: three-dimensional trabecular bone architecture and biomechanical properties.
    Majumdar S; Kothari M; Augat P; Newitt DC; Link TM; Lin JC; Lang T; Lu Y; Genant HK
    Bone; 1998 May; 22(5):445-54. PubMed ID: 9600777
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human cancellous bone from T12-L1 vertebrae has unique microstructural and trabecular shear stress properties.
    Yeni YN; Kim DG; Divine GW; Johnson EM; Cody DD
    Bone; 2009 Jan; 44(1):130-6. PubMed ID: 18848654
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combination of topological parameters and bone volume fraction better predicts the mechanical properties of trabecular bone.
    Pothuaud L; Van Rietbergen B; Mosekilde L; Beuf O; Levitz P; Benhamou CL; Majumdar S
    J Biomech; 2002 Aug; 35(8):1091-9. PubMed ID: 12126668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new method of comprehensive static histomorphometry applied on human lumbar vertebral cancellous bone.
    Thomsen JS; Ebbesen EN; Mosekilde L
    Bone; 2000 Jul; 27(1):129-38. PubMed ID: 10865220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Star volume of marrow space and trabeculae of the first lumbar vertebra: sampling efficiency and biological variation.
    Vesterby A; Gundersen HJ; Melsen F
    Bone; 1989; 10(1):7-13. PubMed ID: 2660885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trabecular architecture in women and men of similar bone mass with and without vertebral fracture: I. Two-dimensional histology.
    Hordon LD; Raisi M; Aaron JE; Paxton SK; Beneton M; Kanis JA
    Bone; 2000 Aug; 27(2):271-6. PubMed ID: 10913921
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stochastic lattice model for bone remodeling and aging.
    Weinkamer R; Hartmann MA; Brechet Y; Fratzl P
    Phys Rev Lett; 2004 Nov; 93(22):228102. PubMed ID: 15601120
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biologically meaningful determinants of the in vitro strength of lumbar vertebrae.
    Vesterby A; Mosekilde L; Gundersen HJ; Melsen F; Mosekilde L; Holme K; Sørensen S
    Bone; 1991; 12(3):219-24. PubMed ID: 1910963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimizing the assessment of age-related changes in trabecular bone.
    Kubik T; Pasowicz M; Tabor Z; Rokita E
    Phys Med Biol; 2002 May; 47(9):1543-53. PubMed ID: 12043819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional characterization of resorption cavity size and location in human vertebral trabecular bone.
    Goff MG; Slyfield CR; Kummari SR; Tkachenko EV; Fischer SE; Yi YH; Jekir MG; Keaveny TM; Hernandez CJ
    Bone; 2012 Jul; 51(1):28-37. PubMed ID: 22507299
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Loading simulation of lumbar spine vertebrae during a compression test using the finite elements method and trabecular bone strength properties, determined by means of nanoindentations.
    Bouzakis KD; Mitsi S; Michailidis N; Mirisidis I; Mesomeris G; Maliaris G; Korlos A; Kapetanos G; Antonarakos P; Anagnostidis K
    J Musculoskelet Neuronal Interact; 2004 Jun; 4(2):152-8. PubMed ID: 15615116
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stochastic simulation of vertebral trabecular bone remodeling.
    Thomsen JS; Mosekilde L; Boyce RW; Mosekilde E
    Bone; 1994; 15(6):655-66. PubMed ID: 7873294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trabecular shear stress amplification and variability in human vertebral cancellous bone: relationship with age, gender, spine level and trabecular architecture.
    Yeni YN; Zelman EA; Divine GW; Kim DG; Fyhrie DP
    Bone; 2008 Mar; 42(3):591-6. PubMed ID: 18180212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of the influence of image resolution on the discriminating power of trabecular bone architectural parameters.
    Tabor Z
    Bone; 2004 Jan; 34(1):170-9. PubMed ID: 14751575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Static histomorphometry of human iliac crest and vertebral trabecular bone: a comparative study.
    Thomsen JS; Ebbesen EN; Mosekilde L
    Bone; 2002 Jan; 30(1):267-74. PubMed ID: 11792596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trabecular shear stress in human vertebral cancellous bone: intra- and inter-individual variations.
    Yeni YN; Hou FJ; Vashishth D; Fyhrie DP
    J Biomech; 2001 Oct; 34(10):1341-6. PubMed ID: 11522314
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.