These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 12231831)

  • 41. Rapid Hormone-induced Hyperpolarization of the Oat Coleoptile Transmembrane Potential.
    Cleland RE; Prins HB; Harper JR; Higinbotham N
    Plant Physiol; 1977 Mar; 59(3):395-7. PubMed ID: 16659860
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effects of Indoleacetic Acid on the Quantity of Mitochondria, Microbodies, and Plastids in the Apical and Expanding Cells of Dark-grown Oat Coleoptiles.
    Shen-Miller J; Gawlik SR
    Plant Physiol; 1977 Aug; 60(2):323-8. PubMed ID: 16660086
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Auxin-induced growth of Avena coleoptiles involves two mechanisms with different pH optima.
    Cleland RE
    Plant Physiol; 1992 Aug; 99(4):1556-61. PubMed ID: 11537888
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Rhythmicity in the Basipetal Transport of Indoleacetic Acid through Coleoptiles.
    Shen-Miller J
    Plant Physiol; 1973 Apr; 51(4):615-9. PubMed ID: 16658381
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Metabolism of Indole-3-acetic Acid: IV. Biological Properties of Amino Acid Conjugates.
    Feung CS; Hamilton RH; Mumma RO
    Plant Physiol; 1977 Jan; 59(1):91-3. PubMed ID: 16659795
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Interactions of phenolic acids, metallic ions and chelating agents on auxin-induced growth.
    Tomaszewski M; Thimann KV
    Plant Physiol; 1966 Nov; 41(9):1443-54. PubMed ID: 16656422
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Inhibitory Effects of Dichlorophenoxyacetones on Auxin-induced Growth of Avena Coleoptile Sections.
    Masingale RE; Lewis JE; Bryant SR; Skinner CG
    Plant Physiol; 1968 Apr; 43(4):641-4. PubMed ID: 16656819
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The pH profile for acid-induced elongation of coleoptile and epicotyl sections is consistent with the acid-growth theory.
    Cleland RE; Buckley G; Nowbar S; Lew NM; Stinemetz C; Evans ML; Rayle DL
    Planta; 1991; 186():70-4. PubMed ID: 11538124
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Physiological mechanism of the auxin-induced increase in light sensitivity of phytochrome-mediated growth responses in Avena coleoptile sections.
    Shinkle JR; Briggs WR
    Plant Physiol; 1985 Oct; 79(2):349-56. PubMed ID: 16664413
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Indoleacetic Acid biosynthesis in Avena coleoptile tips and excised bean shoots.
    Black RC; Hamilton RH
    Plant Physiol; 1971 Nov; 48(5):603-6. PubMed ID: 16657844
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Auxin-induced elongation of short maize coleoptile segments is supported by 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one.
    Park WJ; Schäfer A; Prinsen E; van Onckelen H; Kang BG; Hertel R
    Planta; 2001 May; 213(1):92-100. PubMed ID: 11523660
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A comparison of oligogalacturonide- and auxin-induced extracellular alkalinization and growth responses in roots of intact cucumber seedlings.
    Spiro MD; Bowers JF; Cosgrove DJ
    Plant Physiol; 2002 Oct; 130(2):895-903. PubMed ID: 12376654
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Inhibitors from Carob (Ceratonia siliqua L.): II. Effect on Growth Induced by Indoleacetic Acid or Gibberellins A(1), A(4), A(5), and A(7).
    Corcoran MR
    Plant Physiol; 1970 Oct; 46(4):531-4. PubMed ID: 16657500
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Rapid growth inhibition of Avena coleoptile segments by abscisic Acid.
    Rehm MM; Cline MG
    Plant Physiol; 1973 Jan; 51(1):93-6. PubMed ID: 16658304
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effect of Indoleacetic Acid and Related Indoles on Lactobacillus sp. Strain 11201 Growth, Indoleacetic Acid Catabolism, and 3-Methylindole Formation.
    Honeyfield DC; Carlson JR
    Appl Environ Microbiol; 1990 May; 56(5):1373-7. PubMed ID: 16348189
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Studies on growth regulators. I. Improved Avena coleoptile elongation test for auxin.
    Sirois JC
    Plant Physiol; 1966 Oct; 41(8):1308-12. PubMed ID: 16656401
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Sugar treatment inhibits IAA-induced expression of endo-1,3:1,4-beta-glucanase EI transcripts in barley coleoptile segments.
    Takeda H; Sugahara T; Kotake T; Nakagawa N; Sakurai N
    Physiol Plant; 2010 Aug; 139(4):413-20. PubMed ID: 20412461
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Importance of Time after Excision and of pH on the Kinetics of Response of Wheat Coleoptile Segments to Added Indoleacetic Acid.
    Macdowall FD; Sirois JC
    Plant Physiol; 1977 Mar; 59(3):405-10. PubMed ID: 16659862
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The outer epidermis of Avena and maize coleoptiles is not a unique target for auxin in elongation growth.
    Cleland RE
    Planta; 1991; 186():75-80. PubMed ID: 11538125
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Energetics of the response of maize coleoptile tissue to indoleacetic acid : Characterization by flow calorimetry as a function of time, IAA concentration, and pH.
    Anderson PC; Lovrien RE; Brenner ML
    Planta; 1981 May; 151(6):499-505. PubMed ID: 24302200
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.