These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 12231851)

  • 1. Synthesis of Benzylglucosinolate in Tropaeolum majus L. (Isothiocyanates as Potent Enzyme Inhibitors).
    Lykkesfeldt J; Moller BL
    Plant Physiol; 1993 Jun; 102(2):609-613. PubMed ID: 12231851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation of a Microsomal Enzyme System Involved in Glucosinolate Biosynthesis from Seedlings of Tropaeolum majus L.
    Du L; Halkier BA
    Plant Physiol; 1996 Jul; 111(3):831-837. PubMed ID: 12226332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biosynthesis of Mustard Oil Glucosides: Sodium Phenylacetothiohydroximate and Desulfobenzylglucosinolate, Precursors of Benzylglucosinolate in Tropaeolum majus.
    Underhill LE; Wetter LR
    Plant Physiol; 1969 Apr; 44(4):584-90. PubMed ID: 16657104
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The glucosinolate-myrosinase system in nasturtium (Tropaeolum majus L.): variability of biochemical parameters and screening for clones feasible for pharmaceutical utilization.
    Kleinwächter M; Schnug E; Selmar D
    J Agric Food Chem; 2008 Dec; 56(23):11165-70. PubMed ID: 18986152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and quantification of three active auxins in different tissues of Tropaeolum majus.
    Ludwig-Müller J; Cohen JD
    Physiol Plant; 2002 Jun; 115(2):320-329. PubMed ID: 12060252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Benzylglucosinolate Derived Isothiocyanate from Tropaeolum majus Reduces Gluconeogenic Gene and Protein Expression in Human Cells.
    Guzmán-Pérez V; Bumke-Vogt C; Schreiner M; Mewis I; Borchert A; Pfeiffer AF
    PLoS One; 2016; 11(9):e0162397. PubMed ID: 27622707
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of Tropaeolum majus L. on bacterial infections and in vitro efficacy on apoptosis and DNA lesions in hyperosmotic stress.
    Jurca T; Baldea I; Filip GA; Olteanu D; Clichici S; Pallag A; Vicas L; Marian E; Micle O; Muresan M
    J Physiol Pharmacol; 2018 Jun; 69(3):. PubMed ID: 30279303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydroxyl and Methoxyl Derivatives of Benzylglucosinolate in Lepidium densiflorum with Hydrolysis to Isothiocyanates and non-Isothiocyanate Products: Substitution Governs Product Type and Mass Spectral Fragmentation.
    Pagnotta E; Agerbirk N; Olsen CE; Ugolini L; Cinti S; Lazzeri L
    J Agric Food Chem; 2017 Apr; 65(15):3167-3178. PubMed ID: 28343387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Garden nasturtium (Tropaeolum majus L.) - a source of mineral elements and bioactive compounds.
    Jakubczyk K; Janda K; Watychowicz K; Łukasiak J; Wolska J
    Rocz Panstw Zakl Hig; 2018; 69(2):119-126. PubMed ID: 29766690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of transgenic Arabidopsis thaliana with metabolically engineered high levels of p-hydroxybenzylglucosinolate.
    Petersen BL; Andréasson E; Bak S; Agerbirk N; Halkier BA
    Planta; 2001 Mar; 212(4):612-8. PubMed ID: 11525519
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Profiling glucosinolates and phenolics in vegetative and reproductive tissues of the multi-purpose trees Moringa oleifera L. (horseradish tree) and Moringa stenopetala L.
    Bennett RN; Mellon FA; Foidl N; Pratt JH; Dupont MS; Perkins L; Kroon PA
    J Agric Food Chem; 2003 Jun; 51(12):3546-53. PubMed ID: 12769522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid biosynthesis and characterization of silver nanoparticles from the leaf extract of Tropaeolum majus L. and its enhanced in-vitro antibacterial, antifungal, antioxidant and anticancer properties.
    Valsalam S; Agastian P; Arasu MV; Al-Dhabi NA; Ghilan AM; Kaviyarasu K; Ravindran B; Chang SW; Arokiyaraj S
    J Photochem Photobiol B; 2019 Feb; 191():65-74. PubMed ID: 30594044
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Desulfation followed by sulfation: metabolism of benzylglucosinolate in Athalia rosae (Hymenoptera: Tenthredinidae).
    Opitz SE; Mix A; Winde IB; Müller C
    Chembiochem; 2011 May; 12(8):1252-7. PubMed ID: 21506231
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Benzylglucosinolate, benzylisothiocyanate, and myrosinase activity in papaya fruit during development and ripening.
    Rossetto MR; Oliveira do Nascimento JR; Purgatto E; Fabi JP; Lajolo FM; Cordenunsi BR
    J Agric Food Chem; 2008 Oct; 56(20):9592-9. PubMed ID: 18826320
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms underlying the diuretic effects of Tropaeolum majus L. extracts and its main component isoquercitrin.
    Gasparotto Junior A; Prando TB; Leme Tdos S; Gasparotto FM; Lourenço EL; Rattmann YD; Da Silva-Santos JE; Kassuya CA; Marques MC
    J Ethnopharmacol; 2012 May; 141(1):501-9. PubMed ID: 22465728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Involvement of cytochrome P450 in oxime production in glucosinolate biosynthesis as demonstrated by an in vitro microsomal enzyme system isolated from jasmonic acid-induced seedlings of Sinapis alba L.
    Du L; Lykkesfeldt J; Olsen CE; Halkier BA
    Proc Natl Acad Sci U S A; 1995 Dec; 92(26):12505-9. PubMed ID: 8618930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Safety Assessment and Botanical Standardization of an Edible Species from South America.
    Traesel GK; Machado CD; Tirloni CAS; Menetrier JV; Dos Reis Lívero FA; Lourenço ELB; Oesterreich SA; Budel JM; Junior AG
    J Med Food; 2017 May; 20(5):519-525. PubMed ID: 28375765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Mustard oil glycoside of Tropaeolum majus L. (Indian cress) and the relations of mustard oil glycosides to the growth substances].
    SCHULTZ OE; GMELIN R
    Arch Pharm Ber Dtsch Pharm Ges; 1954; 287(6):342-50. PubMed ID: 13198210
    [No Abstract]   [Full Text] [Related]  

  • 19. Cloning and characterization of an acyl-CoA-dependent diacylglycerol acyltransferase 1 (DGAT1) gene from Tropaeolum majus, and a study of the functional motifs of the DGAT protein using site-directed mutagenesis to modify enzyme activity and oil content.
    Xu J; Francis T; Mietkiewska E; Giblin EM; Barton DL; Zhang Y; Zhang M; Taylor DC
    Plant Biotechnol J; 2008 Oct; 6(8):799-818. PubMed ID: 18631243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A combined biochemical screen and TILLING approach identifies mutations in Sorghum bicolor L. Moench resulting in acyanogenic forage production.
    Blomstedt CK; Gleadow RM; O'Donnell N; Naur P; Jensen K; Laursen T; Olsen CE; Stuart P; Hamill JD; Møller BL; Neale AD
    Plant Biotechnol J; 2012 Jan; 10(1):54-66. PubMed ID: 21880107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.