These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 12231851)

  • 41. Xyloglucan galactosyl- and fucosyltransferase activities from pea epicotyl microsomes.
    Faïk A; Chileshe C; Sterling J; Maclachlan G
    Plant Physiol; 1997 May; 114(1):245-54. PubMed ID: 9159950
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Long Chain (C(20) and C(22)) Fatty Acid Biosynthesis in Developing Seeds of Tropaeolum majus: AN IN VIVO STUDY.
    Pollard MR; Stumpf PK
    Plant Physiol; 1980 Oct; 66(4):641-8. PubMed ID: 16661495
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Umbrella leaves-Biomechanics of transition zone from lamina to petiole of peltate leaves.
    Sacher M; Lautenschläger T; Kempe A; Neinhuis C
    Bioinspir Biomim; 2019 Jun; 14(4):046011. PubMed ID: 31121570
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Towards engineering glucosinolates into non-cruciferous plants.
    Geu-Flores F; Olsen CE; Halkier BA
    Planta; 2009 Jan; 229(2):261-70. PubMed ID: 18830705
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Coumarin compounds in Ammi majus L. callus cultures.
    Ekiert H; Gomółka E
    Pharmazie; 2000 Sep; 55(9):684-7. PubMed ID: 11031774
    [TBL] [Abstract][Full Text] [Related]  

  • 46. 90-Day Oral Toxicity Assessment of Tropaeolum majus L. in Rodents and Lagomorphs.
    Araújo VO; Andreotti CEL; Reis MP; de Lima DA; Pauli KB; Nunes BC; Gomes C; Germano RM; Cardozo Junior EL; Gasparotto Junior A; Lourenço ELB
    J Med Food; 2018 Aug; 21(8):823-831. PubMed ID: 29565700
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Evaluation of subchronic toxicity of the hydroethanolic extract of Tropaeolum majus in Wistar rats.
    Gomes C; Lourenço EL; Liuti ÉB; Duque AO; Nihi F; Lourenço AC; Mendes TC; Gasparotto Junior A; Dalsenter PR
    J Ethnopharmacol; 2012 Jul; 142(2):481-7. PubMed ID: 22633983
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Dhurrin synthesis in sorghum is regulated at the transcriptional level and induced by nitrogen fertilization in older plants.
    Busk PK; Møller BL
    Plant Physiol; 2002 Jul; 129(3):1222-31. PubMed ID: 12114576
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Analysis of accumulation, extractability, and metabolization of five different phenylarsenic compounds in plants by ion chromatography with mass spectrometric detection and by atomic emission spectroscopy.
    Schmidt AC; Kutschera K; Mattusch J; Otto M
    Chemosphere; 2008 Dec; 73(11):1781-7. PubMed ID: 18848716
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cassava plants with a depleted cyanogenic glucoside content in leaves and tubers. Distribution of cyanogenic glucosides, their site of synthesis and transport, and blockage of the biosynthesis by RNA interference technology.
    Jørgensen K; Bak S; Busk PK; Sørensen C; Olsen CE; Puonti-Kaerlas J; Møller BL
    Plant Physiol; 2005 Sep; 139(1):363-74. PubMed ID: 16126856
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Hydrogen Sulfide (H₂S) Releasing Capacity of Isothiocyanates from
    Wang X; Liu Y; Liu X; Lin Y; Zheng X; Lu Y
    Molecules; 2018 Oct; 23(11):. PubMed ID: 30380667
    [No Abstract]   [Full Text] [Related]  

  • 52. Isoflavonoid biosynthesis and accumulation in developing soybean seeds.
    Dhaubhadel S; McGarvey BD; Williams R; Gijzen M
    Plant Mol Biol; 2003 Dec; 53(6):733-43. PubMed ID: 15082922
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Identification of phenolic compounds in petals of nasturtium flowers (Tropaeolum majus) by high-performance liquid chromatography coupled to mass spectrometry and determination of oxygen radical absorbance capacity (ORAC).
    Garzón GA; Manns DC; Riedl K; Schwartz SJ; Padilla-Zakour O
    J Agric Food Chem; 2015 Feb; 63(6):1803-11. PubMed ID: 25659835
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Differing mechanisms of simple nitrile formation on glucosinolate degradation in Lepidium sativum and Nasturtium officinale seeds.
    Williams DJ; Critchley C; Pun S; Chaliha M; O'Hare TJ
    Phytochemistry; 2009; 70(11-12):1401-9. PubMed ID: 19747700
    [TBL] [Abstract][Full Text] [Related]  

  • 55. First Report of Nasturtium as a Natural Host of Cherry leaf roll virus on Amsterdam Island.
    Marais A; Faure C; Candresse T; Hullé M
    Plant Dis; 2010 Apr; 94(4):477. PubMed ID: 30754498
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Phenylalanine derived cyanogenic diglucosides from Eucalyptus camphora and their abundances in relation to ontogeny and tissue type.
    Neilson EH; Goodger JQ; Motawia MS; Bjarnholt N; Frisch T; Olsen CE; Møller BL; Woodrow IE
    Phytochemistry; 2011 Dec; 72(18):2325-34. PubMed ID: 21945721
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Biosynthesis of the nitrile glucosides rhodiocyanoside A and D and the cyanogenic glucosides lotaustralin and linamarin in Lotus japonicus.
    Forslund K; Morant M; Jørgensen B; Olsen CE; Asamizu E; Sato S; Tabata S; Bak S
    Plant Physiol; 2004 May; 135(1):71-84. PubMed ID: 15122013
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A systematic study on extraction of total arsenic from down-scaled sample sizes of plant tissues and implications for arsenic species analysis.
    Schmidt AC; Haufe N; Otto M
    Talanta; 2008 Sep; 76(5):1233-40. PubMed ID: 18761183
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Activities of 3-hydroxy-3-methylglutaryl-CoA reductase and acetyl-CoA carboxylase and rate of biosynthesis of mevalonic acid, squalene, sterols and fatty acids from [1-14C]acetyl-CoA and [2-14C]malonyl-CoA in rat liver: changes induced by daily rhythm].
    Poliakova ED; Dizhe EB; Klimova TA; Denisenko TV; Vasil'eva LE
    Biokhimiia; 1981 Jan; 46(1):126-39. PubMed ID: 6113851
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Bioavailability and metabolism of benzyl glucosinolate in humans consuming Indian cress (Tropaeolum majus L.).
    Platz S; Kühn C; Schiess S; Schreiner M; Kemper M; Pivovarova O; Pfeiffer AF; Rohn S
    Mol Nutr Food Res; 2016 Mar; 60(3):652-60. PubMed ID: 26610401
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.