These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 12231913)

  • 1. Genetic Evidence That the Red-Absorbing Form of Phytochrome B Modulates Gravitropism in Arabidopsis thaliana.
    Liscum E; Hangarter RP
    Plant Physiol; 1993 Sep; 103(1):15-19. PubMed ID: 12231913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The light-induced reduction of the gravitropic growth-orientation of seedlings of Arabidopsis thaliana (L.) Heynh. is a photomorphogenic response mediated synergistically by the far-red-absorbing forms of phytochromes A and B.
    Poppe C; Hangarter RP; Sharrock RA; Nagy F; Schäfer E
    Planta; 1996; 199(4):511-4. PubMed ID: 8818290
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic and transgenic evidence that phytochromes A and B act to modulate the gravitropic orientation of Arabidopsis thaliana hypocotyls.
    Robson PR; Smith H
    Plant Physiol; 1996 Jan; 110(1):211-6. PubMed ID: 11536725
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cytokinin, acting through ethylene, restores gravitropism to Arabidopsis seedlings grown under red light.
    Golan A; Tepper M; Soudry E; Horwitz BA; Gepstein S
    Plant Physiol; 1996 Nov; 112(3):901-4. PubMed ID: 8938401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hypocotyl growth orientation in blue light is determined by phytochrome A inhibition of gravitropism and phototropin promotion of phototropism.
    Lariguet P; Fankhauser C
    Plant J; 2004 Dec; 40(5):826-34. PubMed ID: 15546364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Auxin transport is required for hypocotyl elongation in light-grown but not dark-grown Arabidopsis.
    Jensen PJ; Hangarter RP; Estelle M
    Plant Physiol; 1998 Feb; 116(2):455-62. PubMed ID: 9489005
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The roles of phytochromes in elongation and gravitropism of roots.
    Correll MJ; Kiss JZ
    Plant Cell Physiol; 2005 Feb; 46(2):317-23. PubMed ID: 15695459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assembly of synthetic locked phycocyanobilin derivatives with phytochrome in vitro and in vivo in Ceratodon purpureus and Arabidopsis.
    Yang R; Nishiyama K; Kamiya A; Ukaji Y; Inomata K; Lamparter T
    Plant Cell; 2012 May; 24(5):1936-51. PubMed ID: 22582099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elementary processes of photoperception by phytochrome A for high-irradiance response of hypocotyl elongation in Arabidopsis.
    Shinomura T; Uchida K; Furuya M
    Plant Physiol; 2000 Jan; 122(1):147-56. PubMed ID: 10631258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pre-germination seed-phytochrome signals control stem extension in dark-grown Arabidopsis seedlings.
    Alconada Magliano T; Casal JJ
    Photochem Photobiol Sci; 2004 Jun; 3(6):612-6. PubMed ID: 15170493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RCN1-regulated phosphatase activity and EIN2 modulate hypocotyl gravitropism by a mechanism that does not require ethylene signaling.
    Muday GK; Brady SR; Argueso C; Deruère J; Kieber JJ; DeLong A
    Plant Physiol; 2006 Aug; 141(4):1617-29. PubMed ID: 16798939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic properties of endogenous phytochrome A in Arabidopsis seedlings.
    Hennig L; Büche C; Eichenberg K; Schäfer E
    Plant Physiol; 1999 Oct; 121(2):571-7. PubMed ID: 10517849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phototropism and gravitropism in transgenic lines of Arabidopsis altered in the phytochrome pathway.
    Hopkins JA; Kiss JZ
    Physiol Plant; 2012 Jul; 145(3):461-73. PubMed ID: 22380624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. LLM-Domain B-GATA Transcription Factors Promote Stomatal Development Downstream of Light Signaling Pathways in Arabidopsis thaliana Hypocotyls.
    Klermund C; Ranftl QL; Diener J; Bastakis E; Richter R; Schwechheimer C
    Plant Cell; 2016 Mar; 28(3):646-60. PubMed ID: 26917680
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The altered gravitropic response of the lazy-2 mutant of tomato is phytochrome regulated.
    Gaiser JC; Lomax TL
    Plant Physiol; 1993 Jun; 102(2):339-44. PubMed ID: 11536545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phytochrome-mediated agravitropism in Arabidopsis hypocotyls requires GIL1 and confers a fitness advantage.
    Allen T; Ingles PJ; Praekelt U; Smith H; Whitelam GC
    Plant J; 2006 May; 46(4):641-8. PubMed ID: 16640600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. hy8, a new class of arabidopsis long hypocotyl mutants deficient in functional phytochrome A.
    Parks BM; Quail PH
    Plant Cell; 1993 Jan; 5(1):39-48. PubMed ID: 8439743
    [TBL] [Abstract][Full Text] [Related]  

  • 18. eid1: a new Arabidopsis mutant hypersensitive in phytochrome A-dependent high-irradiance responses.
    Büche C; Poppe C; Schäfer E; Kretsch T
    Plant Cell; 2000 Apr; 12(4):547-58. PubMed ID: 10760243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of hypocotyl elongation in Arabidopsis thaliana by photoreceptor interaction.
    Hennig L; Poppe C; Unger S; Schäfer E
    Planta; 1999 Apr; 208(2):257-63. PubMed ID: 10333589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation and characterization of rice phytochrome A mutants.
    Takano M; Kanegae H; Shinomura T; Miyao A; Hirochika H; Furuya M
    Plant Cell; 2001 Mar; 13(3):521-34. PubMed ID: 11251094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.