These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 12231944)

  • 21. Effect of short-term N(2) deficiency on expression of the ureide pathway in cowpea root nodules.
    Smith PM; Winter H; Storer PJ; Bussell JD; Schuller KA; Atkins CA
    Plant Physiol; 2002 Jul; 129(3):1216-21. PubMed ID: 12114575
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A novel ankyrin-repeat membrane protein, IGN1, is required for persistence of nitrogen-fixing symbiosis in root nodules of Lotus japonicus.
    Kumagai H; Hakoyama T; Umehara Y; Sato S; Kaneko T; Tabata S; Kouchi H
    Plant Physiol; 2007 Mar; 143(3):1293-305. PubMed ID: 17277093
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Localization of a protease in protoplast preparations in infected cells of French bean nodules.
    Pladys D; Dimitrijevic L; Rigaud J
    Plant Physiol; 1991 Nov; 97(3):1174-80. PubMed ID: 16668505
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Medicago sativa haem oxygenase gene is preferentially expressed in root nodules.
    Baudouin E; Frendo P; Le Gleuher M; Puppo A
    J Exp Bot; 2004 Jan; 55(394):43-7. PubMed ID: 14623903
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Aspartate aminotransferase in alfalfa root nodules : I. Purification and partial characterization.
    Griffith SM; Vance CP
    Plant Physiol; 1989 Aug; 90(4):1622-9. PubMed ID: 16666973
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sinorhizobium meliloti RpoH1 is required for effective nitrogen-fixing symbiosis with alfalfa.
    Mitsui H; Sato T; Sato Y; Ito N; Minamisawa K
    Mol Genet Genomics; 2004 May; 271(4):416-25. PubMed ID: 15007732
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Alfalfa Enod12 genes are differentially regulated during nodule development by Nod factors and Rhizobium invasion.
    Bauer P; Crespi MD; Szécsi J; Allison LA; Schultze M; Ratet P; Kondorosi E; Kondorosi A
    Plant Physiol; 1994 Jun; 105(2):585-92. PubMed ID: 8066132
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reversible dark-induced senescence of soybean root nodules.
    Pfeiffer NE; Malik NS; Wagner FW
    Plant Physiol; 1983 Feb; 71(2):393-9. PubMed ID: 16662836
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phosphoenolpyruvate carboxylase plays a crucial role in limiting nitrogen fixation in Lotus japonicus nodules.
    Nomura M; Mai HT; Fujii M; Hata S; Izui K; Tajima S
    Plant Cell Physiol; 2006 May; 47(5):613-21. PubMed ID: 16524873
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phosphorylation of Soybean (Glycine max L.) Nodule Phosphoenolpyruvate Carboxylase in Vitro Decreases Sensitivity to Inhibition by L-Malate.
    Schuller KA; Werner D
    Plant Physiol; 1993 Apr; 101(4):1267-1273. PubMed ID: 12231782
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The PEP-carboxylase kinase gene family in Glycine max (GmPpcK1-4): an in-depth molecular analysis with nodulated, non-transgenic and transgenic plants.
    Xu W; Sato SJ; Clemente TE; Chollet R
    Plant J; 2007 Mar; 49(5):910-23. PubMed ID: 17257170
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tissue cultures derived from ineffective root nodules of alfalfa : callus initiation and enzymic comparisons.
    Vance CP; Johnson LE; Boylan KL
    Plant Physiol; 1984 Dec; 76(4):984-8. PubMed ID: 16663985
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Loss-of-function of ASPARTIC PEPTIDASE NODULE-INDUCED 1 (APN1) in Lotus japonicus restricts efficient nitrogen-fixing symbiosis with specific Mesorhizobium loti strains.
    Yamaya-Ito H; Shimoda Y; Hakoyama T; Sato S; Kaneko T; Hossain MS; Shibata S; Kawaguchi M; Hayashi M; Kouchi H; Umehara Y
    Plant J; 2018 Jan; 93(1):5-16. PubMed ID: 29086445
    [TBL] [Abstract][Full Text] [Related]  

  • 34. First Report of Race 2 of Colletotrichum trifolii Causing Anthracnose on Alfalfa (Medicago sativa) in Wisconsin.
    Samac DA; Allen S; Witte D; Miller D; Peterson J
    Plant Dis; 2014 Jun; 98(6):843. PubMed ID: 30708687
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mining alfalfa (Medicago sativa L.) nodules for salinity tolerant non-rhizobial bacteria to improve growth of alfalfa under salinity stress.
    Noori F; Etesami H; Najafi Zarini H; Khoshkholgh-Sima NA; Hosseini Salekdeh G; Alishahi F
    Ecotoxicol Environ Saf; 2018 Oct; 162():129-138. PubMed ID: 29990724
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Decreased NADH glutamate synthase activity in nodules and flowers of alfalfa (Medicago sativa L.) transformed with an antisense glutamate synthase transgene.
    Schoenbeck MA; Temple SJ; Trepp GB; Blumenthal JM; Samac DA; Gantt JS; Hernandez G; Vance CP
    J Exp Bot; 2000 Jan; 51(342):29-39. PubMed ID: 10938793
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Redifferentiation of bacteria isolated from Lotus japonicus root nodules colonized by Rhizobium sp. NGR234.
    Müller J; Wiemken A; Boller T
    J Exp Bot; 2001 Nov; 52(364):2181-6. PubMed ID: 11604457
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Proteome reference maps of the Lotus japonicus nodule and root.
    Dam S; Dyrlund TF; Ussatjuk A; Jochimsen B; Nielsen K; Goffard N; Ventosa M; Lorentzen A; Gupta V; Andersen SU; Enghild JJ; Ronson CW; Roepstorff P; Stougaard J
    Proteomics; 2014 Feb; 14(2-3):230-40. PubMed ID: 24293220
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Proteolytic Activities in Alfalfa (Medicago sativa L.) Leaves.
    Scalet M; Alpi A; Picciarelli P
    J Plant Physiol; 1984 Sep; 116(2):133-45. PubMed ID: 23195048
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Leghaemoglobin oxygenation gradients in alfalfa and yellow sweetclover nodules.
    Denison RF; Okano Y
    J Exp Bot; 2003 Mar; 54(384):1085-91. PubMed ID: 12598578
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.