These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 12231965)

  • 1. Characterization of Expression of Drought- and Abscisic Acid-Regulated Tomato Genes in the Drought-Resistant Species Lycopersicon pennellii.
    Kahn TL; Fender SE; Bray EA; O'Connell MA
    Plant Physiol; 1993 Oct; 103(2):597-605. PubMed ID: 12231965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of three mRNAs that accumulate in wilted tomato leaves in response to elevated levels of endogenous abscisic acid.
    Cohen A; Bray EA
    Planta; 1990 Aug; 182(1):27-33. PubMed ID: 24196995
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three drought-responsive members of the nonspecific lipid-transfer protein gene family in Lycopersicon pennellii show different developmental patterns of expression.
    Trevino MB; OConnell MA
    Plant Physiol; 1998 Apr; 116(4):1461-8. PubMed ID: 9536064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and characterization of a putative drought-inducible H1 histone gene.
    Wei T; O'Connell MA
    Plant Mol Biol; 1996 Jan; 30(2):255-68. PubMed ID: 8616250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression and molecular cloning of drought-induced genes in the wild tomato Lycopersicon chilense.
    Chen RD; Tabaeizadeh Z
    Biochem Cell Biol; 1992; 70(3-4):199-206. PubMed ID: 1387536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Leucine aminopeptidase RNAs, proteins, and activities increase in response to water deficit, salinity, and the wound signals systemin, methyl jasmonate, and abscisic acid.
    Chao WS; Gu YQ; Pautot V; Bray EA; Walling LL
    Plant Physiol; 1999 Aug; 120(4):979-92. PubMed ID: 10444081
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Drought- and ABA-Induced Changes in Polypeptide and mRNA Accumulation in Tomato Leaves.
    Bray EA
    Plant Physiol; 1988 Dec; 88(4):1210-4. PubMed ID: 16666445
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nucleotide sequence and spatial expression pattern of a drought- and abscisic Acid-induced gene of tomato.
    Plant AL; Cohen A; Moses MS; Bray EA
    Plant Physiol; 1991 Nov; 97(3):900-6. PubMed ID: 16668529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stomatal Response to Light of Solanum pennellii, Lycopersicon esculentum, and a Graft-induced Chimera.
    Heichel GH; Anagnostakis SL
    Plant Physiol; 1978 Sep; 62(3):387-90. PubMed ID: 16660523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chimeric tomato plants show that aphid resistance and triacylglucose production are epidermal autonomous characters.
    Goffreda JC; Szymkowiak EJ; Sussex IM; Mutschler MA
    Plant Cell; 1990 Jul; 2(7):643-9. PubMed ID: 2136638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptome analysis reveals the regulation of cyclic nucleotide-gated ion channels in response to exogenous abscisic acid and calcium treatment under drought stress in tomato.
    Shi J; Du X
    Front Genet; 2023; 14():1139087. PubMed ID: 36926586
    [No Abstract]   [Full Text] [Related]  

  • 12. Expression of unilateral incompatibility in pollen of Lycopersicon pennellii is determined by major loci on chromosomes 1, 6 and 10.
    Chetelat RT; Deverna JW
    Theor Appl Genet; 1991 Oct; 82(6):704-12. PubMed ID: 24213444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Epicuticular Lipid Accumulation on the Leaves of Lycopersicon pennellii (Corr.) D'Arcy and Lycopersicon esculentum Mill.
    Fobes JF; Mudd JB; Marsden MP
    Plant Physiol; 1985 Mar; 77(3):567-70. PubMed ID: 16664099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Abscisic Acid Accumulation by Roots of Xanthium strumarium L. and Lycopersicon esculentum Mill. in Relation to Water Stress.
    Cornish K; Zeevaart JA
    Plant Physiol; 1985 Nov; 79(3):653-8. PubMed ID: 16664467
    [TBL] [Abstract][Full Text] [Related]  

  • 15. QTL analysis of pest resistance in the wild tomato Lycopersicon pennellii: QTLs controlling acylsugar level and composition.
    Mutschler MA; Doerge RW; Liu SC; Kuai JP; Liedl BE; Shapiro JA
    Theor Appl Genet; 1996 May; 92(6):709-18. PubMed ID: 24166395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lycopersicon esculentum lines containing small overlapping introgressions from L. pennellii.
    Eshed Y; Abu-Abied M; Saranga Y; Zamir D
    Theor Appl Genet; 1992 May; 83(8):1027-34. PubMed ID: 24202931
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organ-Specific and Environmentally Regulated Expression of Two Abscisic Acid-Induced Genes of Tomato : Nucleotide Sequence and Analysis of the Corresponding cDNAs.
    Cohen A; Plant AL; Moses MS; Bray EA
    Plant Physiol; 1991 Dec; 97(4):1367-74. PubMed ID: 16668558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rice NAC transcription factor ONAC095 plays opposite roles in drought and cold stress tolerance.
    Huang L; Hong Y; Zhang H; Li D; Song F
    BMC Plant Biol; 2016 Sep; 16(1):203. PubMed ID: 27646344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alleviation of Drought Stress by Hydrogen Sulfide Is Partially Related to the Abscisic Acid Signaling Pathway in Wheat.
    Ma D; Ding H; Wang C; Qin H; Han Q; Hou J; Lu H; Xie Y; Guo T
    PLoS One; 2016; 11(9):e0163082. PubMed ID: 27649534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resistance to Phytophthora infestans in Lycopersicon pennellii.
    Smart CD; Tanksley SD; Mayton H; Fry WE
    Plant Dis; 2007 Aug; 91(8):1045-1049. PubMed ID: 30780440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.