These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 12232107)

  • 41. The early genetic response to light in the green unicellular alga Chlamydomonas eugametos grown under light/dark cycles involves genes that represent direct responses to light and photosynthesis.
    Gagné G; Guertin M
    Plant Mol Biol; 1992 Feb; 18(3):429-45. PubMed ID: 1371402
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Identification, characterization and gene expression analyses of important flowering genes related to photoperiodic pathway in bamboo.
    Dutta S; Biswas P; Chakraborty S; Mitra D; Pal A; Das M
    BMC Genomics; 2018 Mar; 19(1):190. PubMed ID: 29523071
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Light- and clock-control of genes involved in detoxification.
    Carmona-Antoñanzas G; Santi M; Migaud H; Vera LM
    Chronobiol Int; 2017; 34(8):1026-1041. PubMed ID: 28617195
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Structure and Light-Induced Expression of a Small Heat-Shock Protein Gene of Pharbitis nil.
    Krishna P; Felsheim RF; Larkin JC; Das A
    Plant Physiol; 1992 Dec; 100(4):1772-9. PubMed ID: 16653196
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of dark phases and temperature on the chlorophyll a/b binding protein mRNA level oscillations in tomato seedlings.
    Riesselmann S; Piechulla B
    Plant Mol Biol; 1990 Apr; 14(4):605-16. PubMed ID: 2102839
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Dark-induced accumulation of mRNA for a homolog of translationally controlled tumor protein (TCTP) in Pharbitis.
    Sage-Ono K; Ono M; Harada H; Kamada H
    Plant Cell Physiol; 1998 Mar; 39(3):357-60. PubMed ID: 9588028
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Photoperiodic modulation of clock gene expression in the avian premammillary nucleus.
    Leclerc B; Kang SW; Mauro LJ; Kosonsiriluk S; Chaiseha Y; El Halawani ME
    J Neuroendocrinol; 2010 Feb; 22(2):119-28. PubMed ID: 20002961
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effect of light on soluble guanylyl cyclase activity in Pharbitis nil seedlings.
    Szmidt-Jaworska A; Jaworski K; Kopcewicz J
    J Photochem Photobiol B; 2008 Oct; 93(1):9-15. PubMed ID: 18674925
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Different circadian rhythms regulate photoperiodic flowering response and leaf movement in Pharbitis nil (L.) Choisy.
    Bollig I
    Planta; 1977 Jan; 135(2):137-42. PubMed ID: 24420015
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Length of the dark period affects flower opening and the expression of circadian-clock associated genes as well as xyloglucan endotransglucosylase/hydrolase genes in petals of morning glory (Ipomoea nil).
    Shinozaki Y; Tanaka R; Ono H; Ogiwara I; Kanekatsu M; van Doorn WG; Yamada T
    Plant Cell Rep; 2014 Jul; 33(7):1121-31. PubMed ID: 24682460
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Growth of tobacco in short-day conditions leads to high starch, low sugars, altered diurnal changes in the Nia transcript and low nitrate reductase activity, and inhibition of amino acid synthesis.
    Matt P; Schurr U; Klein D; Krapp A; Stitt M
    Planta; 1998 Dec; 207(1):27-41. PubMed ID: 9951717
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Flowering and dwarfism induced by DNA demethylation in Pharbitis nil.
    Iwase Y; Shiraya T; Takeno K
    Physiol Plant; 2010 May; 139(1):118-27. PubMed ID: 20059740
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Time to flower: interplay between photoperiod and the circadian clock.
    Johansson M; Staiger D
    J Exp Bot; 2015 Feb; 66(3):719-30. PubMed ID: 25371508
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Interactions between Light and the Circadian Clock in the Regulation of CAT2 Expression in Arabidopsis.
    Zhong HH; Young JC; Pease EA; Hangarter RP; McClung CR
    Plant Physiol; 1994 Mar; 104(3):889-898. PubMed ID: 12232134
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Phytochrome-interacting factor 4 and 5 (PIF4 and PIF5) activate the homeobox ATHB2 and auxin-inducible IAA29 genes in the coincidence mechanism underlying photoperiodic control of plant growth of Arabidopsis thaliana.
    Kunihiro A; Yamashino T; Nakamichi N; Niwa Y; Nakanishi H; Mizuno T
    Plant Cell Physiol; 2011 Aug; 52(8):1315-29. PubMed ID: 21666227
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Circadian rhythmicity in the expression of a novel light-regulated rice gene.
    Reimmann C; Dudler R
    Plant Mol Biol; 1993 Apr; 22(1):165-70. PubMed ID: 8499615
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Isolation of rice genes possibly involved in the photoperiodic control of flowering by a fluorescent differential display method.
    Hayama R; Izawa T; Shimamoto K
    Plant Cell Physiol; 2002 May; 43(5):494-504. PubMed ID: 12040096
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Changes of the diurnal and circadian (endogenous) mRNA oscillations of the chlorophyll a/b binding protein in tomato leaves during altered day/night (light/dark) regimes.
    Piechulla B
    Plant Mol Biol; 1989 Mar; 12(3):317-27. PubMed ID: 24272867
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The circadian clock regulates the photoperiodic response of hypocotyl elongation through a coincidence mechanism in Arabidopsis thaliana.
    Niwa Y; Yamashino T; Mizuno T
    Plant Cell Physiol; 2009 Apr; 50(4):838-54. PubMed ID: 19233867
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Circadian rhythms of gene expression in Chlamydomonas reinhardtii: circadian cycling of mRNA abundances of cab II, and possibly of beta-tubulin and cytochrome c.
    Jacobshagen S; Johnson CH
    Eur J Cell Biol; 1994 Jun; 64(1):142-52. PubMed ID: 7957302
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.