These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
95 related articles for article (PubMed ID: 12232108)
1. Nucleotide Availability in Maize (Zea mays L.) Root Tips (Estimation of Free and Protein-Bound Nucleotides Using 31P-Nuclear Magnetic Resonance and a Novel Protein-Ligand-Binding Assay). Hooks MA; Shearer GC; Roberts J Plant Physiol; 1994 Feb; 104(2):581-589. PubMed ID: 12232108 [TBL] [Abstract][Full Text] [Related]
2. Compartmentation of Nucleotides in Corn Root Tips Studied by P-NMR and HPLC. Hooks MA; Clark RA; Nieman RH; Roberts JK Plant Physiol; 1989 Mar; 89(3):963-9. PubMed ID: 16666649 [TBL] [Abstract][Full Text] [Related]
3. Determination of nucleotides and sugar nucleotides involved in protein glycosylation by high-performance anion-exchange chromatography: sugar nucleotide contents in cultured insect cells and mammalian cells. Tomiya N; Ailor E; Lawrence SM; Betenbaugh MJ; Lee YC Anal Biochem; 2001 Jun; 293(1):129-37. PubMed ID: 11373089 [TBL] [Abstract][Full Text] [Related]
4. Kinetic studies of the variations of cytoplasmic pH, nucleotide triphosphates (31P-NMR) and lactate during normoxic and anoxic transitions in maize root tips. Saint-Ges V; Roby C; Bligny R; Pradet A; Douce R Eur J Biochem; 1991 Sep; 200(2):477-82. PubMed ID: 1889412 [TBL] [Abstract][Full Text] [Related]
5. An in Vivo Nuclear Magnetic Resonance Investigation of Ion Transport in Maize (Zea mays) and Spartina anglica Roots during Exposure to High Salt Concentrations. Spickett CM; Smirnoff N; Ratcliffe RG Plant Physiol; 1993 Jun; 102(2):629-638. PubMed ID: 12231853 [TBL] [Abstract][Full Text] [Related]
6. Facilitated transport of Mn2+ in sycamore (Acer pseudoplatanus) cells and excised maize root tips. A comparative 31P n.m.r. study in vivo. Roby C; Bligny R; Douce R; Tu SI; Pfeffer PE Biochem J; 1988 Jun; 252(2):401-8. PubMed ID: 3415663 [TBL] [Abstract][Full Text] [Related]
7. Observation of uridine triphosphate:glucose-1-phosphate uridylyltransferase activity in maize root tips by saturation transfer 31P-NMR. Estimation of cytoplasmic PP. Roberts JK Biochim Biophys Acta; 1990 Jan; 1051(1):29-36. PubMed ID: 2153416 [TBL] [Abstract][Full Text] [Related]
8. Quantification of all 12 canonical ribonucleotides by real-time fluorogenic in vitro transcription. Purhonen J; Hofer A; Kallijärvi J Nucleic Acids Res; 2024 Jan; 52(1):e6. PubMed ID: 38008466 [TBL] [Abstract][Full Text] [Related]
9. Elongation and termination reactions of protein synthesis on maize root tip polyribosomes studied in a homologous cell-free system. Webster C; Kim CY; Roberts JK Plant Physiol; 1991 Jun; 96(2):418-25. PubMed ID: 16668202 [TBL] [Abstract][Full Text] [Related]
10. Interactions of Escherichia coli primary replicative helicase DnaB protein with nucleotide cofactors. Jezewska MJ; Kim US; Bujalowski W Biophys J; 1996 Oct; 71(4):2075-86. PubMed ID: 8889182 [TBL] [Abstract][Full Text] [Related]
11. Effect of graded hypoxia on the rat hepatic tissue oxygenation and energy metabolism monitored by near-infrared and 31P nuclear magnetic resonance spectroscopy. Seifalian AM; El-Desoky H; Delpy DT; Davidson BR FASEB J; 2001 Dec; 15(14):2642-8. PubMed ID: 11726540 [TBL] [Abstract][Full Text] [Related]
12. Hypoxic Induction of Anoxia Tolerance in Roots of Adh1 Null Zea mays L. Johnson JR; Cobb BG; Drew MC Plant Physiol; 1994 May; 105(1):61-67. PubMed ID: 12232186 [TBL] [Abstract][Full Text] [Related]
13. Nucleotide Metabolism in Salt-Stressed Zea mays L. Root Tips: I. Adenine and Uridine Nucleotides. Peterson TA; Nieman RH; Clark RA Plant Physiol; 1987 Dec; 85(4):984-9. PubMed ID: 16665842 [TBL] [Abstract][Full Text] [Related]
14. A metabolic study of the regulation of proteolysis by sugars in maize root tips: effects of glycerol and dihydroxyacetone. Brouquisse R; Rolin D; Cortès S; Gaudillère M; Evrard A; Roby C Planta; 2007 Feb; 225(3):693-709. PubMed ID: 16944197 [TBL] [Abstract][Full Text] [Related]
15. Borate-nucleotide complex formation depends on charge and phosphorylation state. Kim DH; Faull KF; Norris AJ; Eckhert CD J Mass Spectrom; 2004 Jul; 39(7):743-51. PubMed ID: 15282753 [TBL] [Abstract][Full Text] [Related]
16. A 31P-NMR study of the interaction of Mg2+ ions with nucleoside diphosphates. Tran-Dinh S; Neumann JM Nucleic Acids Res; 1977 Feb; 4(2):397-403. PubMed ID: 14328 [TBL] [Abstract][Full Text] [Related]
17. Contribution of Malate and Amino Acid Metabolism to Cytoplasmic pH Regulation in Hypoxic Maize Root Tips Studied Using Nuclear Magnetic Resonance Spectroscopy. Roberts JK; Hooks MA; Miaullis AP; Edwards S; Webster C Plant Physiol; 1992 Feb; 98(2):480-7. PubMed ID: 16668665 [TBL] [Abstract][Full Text] [Related]
18. Nucleotide binding by the nitrogenase Fe protein: a 31P NMR study of ADP and ATP interactions with the Fe protein of Klebsiella pneumoniae. Miller RW; Eady RR; Gormal C; Fairhurst SA; Smith BE Biochem J; 1998 Sep; 334 ( Pt 3)(Pt 3):601-7. PubMed ID: 9729468 [TBL] [Abstract][Full Text] [Related]
19. Modulation of sodium currents in rat sensory neurons by nucleotides. Park SY; Kim HI; Shin YK; Lee CS; Park M; Song JH Brain Res; 2004 May; 1006(2):168-76. PubMed ID: 15051520 [TBL] [Abstract][Full Text] [Related]
20. 31P-nuclear magnetic resonance spectroscopy in vivo of six human melanoma xenograft lines: tumour bioenergetic status and blood supply. Lyng H; Olsen DR; Southon TE; Rofstad EK Br J Cancer; 1993 Dec; 68(6):1061-70. PubMed ID: 8260356 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]