These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 12232126)

  • 1. Quenching of Chlorophyll a Fluorescence in Response to Na+-Dependent HCO3- Transport-Mediated Accumulation of Inorganic Carbon in the Cyanobacterium Synechococcus UTEX 625.
    Crotty CM; Tyrrell PN; Espie GS
    Plant Physiol; 1994 Feb; 104(2):785-791. PubMed ID: 12232126
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monensin Inhibition of Na+-Dependent HCO3- Transport Distinguishes It from Na+-Independent HCO3- Transport and Provides Evidence for Na+/HCO3- Symport in the Cyanobacterium Synechococcus UTEX 625.
    Espie GS; Kandasamy RA
    Plant Physiol; 1994 Apr; 104(4):1419-1428. PubMed ID: 12232177
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ethoxyzolamide Differentially Inhibits CO2 Uptake and Na+-Independent and Na+-Dependent HCO3- Uptake in the Cyanobacterium Synechococcus sp. UTEX 625.
    Tyrrell PN; Kandasamy RA; Crotty CM; Espie GS
    Plant Physiol; 1996 Sep; 112(1):79-88. PubMed ID: 12226376
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Na-Independent HCO(3) Transport and Accumulation in the Cyanobacterium Synechococcus UTEX 625.
    Espie GS; Kandasamy RA
    Plant Physiol; 1992 Feb; 98(2):560-8. PubMed ID: 16668677
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photosynthetic Nitrite Reduction as Influenced by the Internal Inorganic Carbon Pool in Air-Grown Cells of Synechococcus UTEX 625.
    Mir NA; Salon C; Canvin DT
    Plant Physiol; 1995 May; 108(1):313-318. PubMed ID: 12228476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glycolaldehyde Inhibits CO(2) Fixation in the Cyanobacterium Synechococcus UTEX 625 without Inhibiting the Accumulation of Inorganic Carbon or the Associated Quenching of Chlorophyll a Fluorescence.
    Miller AG; Canvin DT
    Plant Physiol; 1989 Nov; 91(3):1044-9. PubMed ID: 16667109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chlorophyll a Fluorescence Yield as a Monitor of Both Active CO(2) and HCO(3) Transport by the Cyanobacterium Synechococcus UTEX 625.
    Miller AG; Espie GS; Canvin DT
    Plant Physiol; 1988 Mar; 86(3):655-8. PubMed ID: 16665965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High Affinity Transport of CO(2) in the Cyanobacterium Synechococcus UTEX 625.
    Espie GS; Miller AG; Canvin DT
    Plant Physiol; 1991 Nov; 97(3):943-53. PubMed ID: 16668535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Driving Forces for Bicarbonate Transport in the Cyanobacterium Synechococcus R-2 (PCC 7942).
    Ritchie RJ; Nadolny C; Larkum A
    Plant Physiol; 1996 Dec; 112(4):1573-1584. PubMed ID: 12226464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inorganic Carbon Accumulation Stimulates Linear Electron Flow to Artificial Electron Acceptors of Photosystem I in Air-Grown Cells of the Cyanobacterium Synechococcus UTEX 625.
    Li Q; Canvin DT
    Plant Physiol; 1997 Aug; 114(4):1273-1281. PubMed ID: 12223770
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energy sources for HCO3- and CO2 transport in air-grown cells of synechococcus UTEX 625.
    Li Q; Canvin DT
    Plant Physiol; 1998 Mar; 116(3):1125-32. PubMed ID: 9501145
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Induction of CO2 and Bicarbonate Transport in the Green Alga Chlorella ellipsoidea (II. Evidence for Induction in Response to External CO2 Concentration).
    Matsuda Y; Colman B
    Plant Physiol; 1995 May; 108(1):253-260. PubMed ID: 12228471
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Na-Stimulation of Photosynthesis in the Cyanobacterium Synechococcus UTEX 625 Grown on High Levels of Inorganic Carbon.
    Miller AG; Canvin DT
    Plant Physiol; 1987 May; 84(1):118-24. PubMed ID: 16665383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the na-requirement in cyanobacterial photosynthesis.
    Espie GS; Miller AG; Canvin DT
    Plant Physiol; 1988 Nov; 88(3):757-63. PubMed ID: 16666379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the non-photochemical quenching of chlorophyll fluorescence that occurs during the active accumulation of inorganic carbon in the cyanobacterium Synechococcus PCC 7942.
    Miller AG; Espie GS; Bruce D
    Photosynth Res; 1996 Sep; 49(3):251-62. PubMed ID: 24271703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrogenic sodium-dependent bicarbonate secretion by glial cells of the leech central nervous system.
    Deitmer JW
    J Gen Physiol; 1991 Sep; 98(3):637-55. PubMed ID: 1761972
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Active Transport of Inorganic Carbon Increases the Rate of O(2) Photoreduction by the Cyanobacterium Synechococcus UTEX 625.
    Miller AG; Espie GS; Canvin DT
    Plant Physiol; 1988 Sep; 88(1):6-9. PubMed ID: 16666280
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for Na-Independent HCO(3) Uptake by the Cyanobacterium Synechococcus leopoliensis.
    Espie GS; Canvin DT
    Plant Physiol; 1987 May; 84(1):125-30. PubMed ID: 16665385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Active transport and accumulation of bicarbonate by a unicellular cyanobacterium.
    Miller AG; Colman B
    J Bacteriol; 1980 Sep; 143(3):1253-9. PubMed ID: 6773925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Relationship between Ribulose Bisphosphate Concentration, Dissolved Inorganic Carbon (DIC) Transport and DIC-Limited Photosynthesis in the Cyanobacterium Synechococcus leopoliensis Grown at Different Concentrations of Inorganic Carbon.
    Mayo WP; Elrifi IR; Turpin DH
    Plant Physiol; 1989 Jun; 90(2):720-7. PubMed ID: 16666834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.