These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 12232153)

  • 1. Low Temperature-Induced Cytoplasmic Acidosis in Cultured Mung Bean (Vigna radiata [L.] Wilczek) Cells.
    Yoshida S
    Plant Physiol; 1994 Apr; 104(4):1131-1138. PubMed ID: 12232153
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impairment of Tonoplast H-ATPase as an Initial Physiological Response of Cells to Chilling in Mung Bean (Vigna radiata [L.] Wilczek).
    Yoshida S; Matsuura C; Etani S
    Plant Physiol; 1989 Feb; 89(2):634-42. PubMed ID: 16666594
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptomic analysis of Vigna radiata in response to chilling stress and uniconazole application.
    Hu H; Feng N; Shen X; Zhao L; Zheng D
    BMC Genomics; 2022 Mar; 23(1):205. PubMed ID: 35287570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chilling-Induced Inactivation and Its Recovery of Tonoplast H-ATPase in Mung Bean Cell Suspension Cultures.
    Yoshida S
    Plant Physiol; 1991 Feb; 95(2):456-60. PubMed ID: 16668005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of Temperature Dependency of Tonoplast Proton Translocation between Plants Sensitive and Insensitive to Chilling.
    Yoshida S; Matsuura-Endo C
    Plant Physiol; 1991 Feb; 95(2):504-8. PubMed ID: 16668013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of aroma volatiles and understanding 2-acetyl-1-pyrroline biosynthetic mechanism in aromatic mung bean (
    Attar U; Hinge V; Zanan R; Adhav R; Nadaf A
    Physiol Mol Biol Plants; 2017 Apr; 23(2):443-451. PubMed ID: 28461731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formulation-based antagonistic endophyte Amycolatopsis sp. SND-1 triggers defense response in Vigna radiata (L.) R. Wilczek. (Mung bean) against Cercospora leaf spot disease.
    Basavarajappa DS; Kumar RS; Nayaka S
    Arch Microbiol; 2023 Feb; 205(2):77. PubMed ID: 36720740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chill-Induced Changes in the Activity and Abundance of the Vacuolar Proton-Pumping Pyrophosphatase from Mung Bean Hypocotyls.
    Darley CP; Davies JM; Sanders D
    Plant Physiol; 1995 Oct; 109(2):659-665. PubMed ID: 12228620
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature-induced Changes in Hill Activity of Chloroplasts Isolated from Chilling-sensitive and Chilling-resistant Plants.
    Nolan WG; Smillie RM
    Plant Physiol; 1977 Jun; 59(6):1141-5. PubMed ID: 16660010
    [TBL] [Abstract][Full Text] [Related]  

  • 10.
    Lo CW; Pi CC; Chen YT; Chen HW
    Front Pharmacol; 2020; 11():584973. PubMed ID: 33324216
    [No Abstract]   [Full Text] [Related]  

  • 11. Remediation of arsenic in mung bean (Vigna radiata) with growth enhancement by unique arsenic-resistant bacterium Acinetobacter lwoffii.
    Das J; Sarkar P
    Sci Total Environ; 2018 May; 624():1106-1118. PubMed ID: 29625525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Yield, growth and physiological responses of mung bean [Vigna radiata (L.) Wilczek] genotypes to waterlogging at vegetative stage.
    Kumar P; Pal M; Joshi R; Sairam RK
    Physiol Mol Biol Plants; 2013 Apr; 19(2):209-20. PubMed ID: 24431488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. H2O2 treatment induces glutathione accumulation and chilling tolerance in mung bean.
    Yu CW; Murphy TM; Sung WW; Lin CH
    Funct Plant Biol; 2002 Aug; 29(9):1081-1087. PubMed ID: 32689559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Field microclimate and yield for proso millet intercropping with mung bean in the dryland of Loess Plateau, Northwest China.
    Gong XW; Li J; Ma HC; Chen GH; Wang M; Yang P; Gao JF; Feng BL
    Ying Yong Sheng Tai Xue Bao; 2018 Oct; 29(10):3256-3266. PubMed ID: 30325150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chilling induces a decrease in pyrophosphate-dependent H+-accumulation associated with a DeltapH(vac)-stat in mung bean, a chill-sensitive plant.
    Kawamura Y
    Plant Cell Environ; 2008 Mar; 31(3):288-300. PubMed ID: 18034771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. First Report of Anthracnose Caused by Colletotrichum acutatum on Mung Bean Sprouts in Taiwan.
    Shen YM; Liu HL; Chang ST; Chao CH
    Plant Dis; 2010 Jan; 94(1):131. PubMed ID: 30754427
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A proteomics study of the mung bean epicotyl regulated by brassinosteroids under conditions of chilling stress.
    Huang B; Chu CH; Chen SL; Juan HF; Chen YM
    Cell Mol Biol Lett; 2006; 11(2):264-78. PubMed ID: 16847571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of ultraviolet irradiation, pulsed electric field, hot water dip and ethanol vapours treatment on keeping and sensory quality of mung bean (Vigna radiata L. Wilczek) sprouts.
    Goyal A; Siddiqui S
    J Food Sci Technol; 2014 Oct; 51(10):2664-70. PubMed ID: 25328209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiological and biochemical mechanisms of spermine-induced cadmium stress tolerance in mung bean (Vigna radiata L.) seedlings.
    Nahar K; Rahman M; Hasanuzzaman M; Alam MM; Rahman A; Suzuki T; Fujita M
    Environ Sci Pollut Res Int; 2016 Nov; 23(21):21206-21218. PubMed ID: 27491421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of distillery effluent on germination and growth of mung bean (Vigna radiata) seeds.
    Kannan A; Upreti RK
    J Hazard Mater; 2008 May; 153(1-2):609-15. PubMed ID: 17928137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.