These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 12232197)

  • 1. Responses of Ribulose-1,5-Bisphosphate Carboxylase, Cytochrome f, and Sucrose Synthesis Enzymes in Rice Leaves to Leaf Nitrogen and Their Relationships to Photosynthesis.
    Makino A; Nakano H; Mae T
    Plant Physiol; 1994 May; 105(1):173-179. PubMed ID: 12232197
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Growth Temperature on the Responses of Ribulose-1,5-Biphosphate Carboxylase, Electron Transport Components, and Sucrose Synthesis Enzymes to Leaf Nitrogen in Rice, and Their Relationships to Photosynthesis.
    Makino A; Nakano H; Mae T
    Plant Physiol; 1994 Aug; 105(4):1231-1238. PubMed ID: 12232279
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Effect of Elevated Partial Pressures of CO2 on the Relationship between Photosynthetic Capacity and N Content in Rice Leaves.
    Nakano H; Makino A; Mae T
    Plant Physiol; 1997 Sep; 115(1):191-198. PubMed ID: 12223799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photosynthetic acclimation in rice leaves to free-air CO2 enrichment related to both ribulose-1,5-bisphosphate carboxylation limitation and ribulose-1,5-bisphosphate regeneration limitation.
    Chen GY; Yong ZH; Liao Y; Zhang DY; Chen Y; Zhang HB; Chen J; Zhu JG; Xu DQ
    Plant Cell Physiol; 2005 Jul; 46(7):1036-45. PubMed ID: 15840641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photosynthesis, plant growth and N allocation in transgenic rice plants with decreased Rubisco under CO2 enrichment.
    Makino A; Nakano H; Mae T; Shimada T; Yamamoto N
    J Exp Bot; 2000 Feb; 51 Spec No():383-9. PubMed ID: 10938846
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Whole-plant growth and N utilization in transgenic rice plants with increased or decreased Rubisco content under different CO2 partial pressures.
    Sudo E; Suzuki Y; Makino A
    Plant Cell Physiol; 2014 Nov; 55(11):1905-11. PubMed ID: 25231963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Does Decrease in Ribulose-1,5-Bisphosphate Carboxylase by Antisense RbcS Lead to a Higher N-Use Efficiency of Photosynthesis under Conditions of Saturating CO2 and Light in Rice Plants?
    Makino A; Shimada T; Takumi S; Kaneko K; Matsuoka M; Shimamoto K; Nakano H; Miyao-Tokutomi M; Mae T; Yamamoto N
    Plant Physiol; 1997 Jun; 114(2):483-491. PubMed ID: 12223722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimating the excess investment in ribulose-1,5-bisphosphate Carboxylase/Oxygenase in leaves of spring wheat grown under elevated CO2.
    Theobald JC; Mitchell RA; Parry MA; Lawlor DW
    Plant Physiol; 1998 Nov; 118(3):945-55. PubMed ID: 9808739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The determiner of photosynthetic acclimation induced by biochemical limitation under elevated CO
    Yang K; Huang Y; Yang J; Yu L; Hu Z; Sun W; Zhang Q
    J Plant Physiol; 2023 Jan; 280():153889. PubMed ID: 36493669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The temporal and species dynamics of photosynthetic acclimation in flag leaves of rice (Oryza sativa) and wheat (Triticum aestivum) under elevated carbon dioxide.
    Zhu C; Ziska L; Zhu J; Zeng Q; Xie Z; Tang H; Jia X; Hasegawa T
    Physiol Plant; 2012 Jul; 145(3):395-405. PubMed ID: 22268610
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vertical, horizontal and azimuthal variations in leaf photosynthetic characteristics within a Fagus crenata crown in relation to light acclimation.
    Iio A; Fukasawa H; Nose Y; Kato S; Kakubari Y
    Tree Physiol; 2005 May; 25(5):533-44. PubMed ID: 15741146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Small Decrease in Rubisco Content by Individual Suppression of RBCS Genes Leads to Improvement of Photosynthesis and Greater Biomass Production in Rice Under Conditions of Elevated CO2.
    Kanno K; Suzuki Y; Makino A
    Plant Cell Physiol; 2017 Mar; 58(3):635-642. PubMed ID: 28158810
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rubisco activation state decreases with increasing nitrogen content in apple leaves.
    Cheng L; Fuchigami LH
    J Exp Bot; 2000 Oct; 51(351):1687-94. PubMed ID: 11053458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The rate-limiting step for CO(2) assimilation at different temperatures is influenced by the leaf nitrogen content in several C(3) crop species.
    Yamori W; Nagai T; Makino A
    Plant Cell Environ; 2011 May; 34(5):764-77. PubMed ID: 21241332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decreased ribulose-1,5-bisphosphate carboxylase-oxygenase in transgenic tobacco transformed with "antisense" rbcS : I. Impact on photosynthesis in ambient growth conditions.
    Quick WP; Schurr U; Scheibe R; Schulze ED; Rodermel SR; Bogorad L; Stitt M
    Planta; 1991 Mar; 183(4):542-54. PubMed ID: 24193848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinctive Responses of Ribulose-1,5-Bisphosphate Carboxylase and Carbonic Anhydrase in Wheat Leaves to Nitrogen Nutrition and their Possible Relationships to CO(2)-Transfer Resistance.
    Makino A; Sakashita H; Hidema J; Mae T; Ojima K; Osmond B
    Plant Physiol; 1992 Dec; 100(4):1737-43. PubMed ID: 16653191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of Ambient CO2 Concentration on Growth and Nitrogen Use in Tobacco (Nicotiana tabacum) Plants Transformed with an Antisense Gene to the Small Subunit of Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase.
    Masle J; Hudson GS; Badger MR
    Plant Physiol; 1993 Dec; 103(4):1075-1088. PubMed ID: 12232002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photosynthetic characteristics of rice leaves grown under red light with or without supplemental blue light.
    Matsuda R; Ohashi-Kaneko K; Fujiwara K; Goto E; Kurata K
    Plant Cell Physiol; 2004 Dec; 45(12):1870-4. PubMed ID: 15653806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of growth and measurement light intensities on temperature dependence of CO(2) assimilation rate in tobacco leaves.
    Yamori W; Evans JR; Von Caemmerer S
    Plant Cell Environ; 2010 Mar; 33(3):332-43. PubMed ID: 19895395
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Light-saturated photosynthetic rate in high-nitrogen rice (Oryza sativa L.) leaves is related to chloroplastic CO2 concentration.
    Li Y; Gao Y; Xu X; Shen Q; Guo S
    J Exp Bot; 2009; 60(8):2351-60. PubMed ID: 19395387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.