These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
300 related articles for article (PubMed ID: 12232348)
1. Leaf Developmental Age Controls Expression of Genes Encoding Enzymes of Chlorophyll and Heme Biosynthesis in Pea (Pisum sativum L.). He ZH; Li J; Sundqvist C; Timko MP Plant Physiol; 1994 Oct; 106(2):537-546. PubMed ID: 12232348 [TBL] [Abstract][Full Text] [Related]
2. NADPH: protochlorophyllide oxidoreductases in white pine (Pinus strobus) and loblolly pine (P. taeda). Evidence for light and developmental regulation of expression and conservation in gene organization and protein structure between angiosperms and gymnosperms. Spano AJ; He Z; Timko MP Mol Gen Genet; 1992 Dec; 236(1):86-95. PubMed ID: 1494355 [TBL] [Abstract][Full Text] [Related]
3. Differential expression of genes encoding the light-dependent and light-independent enzymes for protochlorophyllide reduction during development in loblolly pine. Skinner JS; Timko MP Plant Mol Biol; 1999 Feb; 39(3):577-92. PubMed ID: 10092184 [TBL] [Abstract][Full Text] [Related]
4. Molecular cloning, nuclear gene structure, and developmental expression of NADPH: protochlorophyllide oxidoreductase in pea (Pisum sativum L.). Spano AJ; He Z; Michel H; Hunt DF; Timko MP Plant Mol Biol; 1992 Mar; 18(5):967-72. PubMed ID: 1581573 [TBL] [Abstract][Full Text] [Related]
5. Salt-stress induced modulation of chlorophyll biosynthesis during de-etiolation of rice seedlings. Turan S; Tripathy BC Physiol Plant; 2015 Mar; 153(3):477-91. PubMed ID: 25132047 [TBL] [Abstract][Full Text] [Related]
6. Etioplasts with protochlorophyll and protochlorophyllide forms in the under-soil epicotyl segments of pea (Pisum sativum) seedlings grown under natural light conditions. Vitányi B; Kósa A; Solymosi K; Böddi B Physiol Plant; 2013 Jun; 148(2):307-15. PubMed ID: 23067197 [TBL] [Abstract][Full Text] [Related]
7. Rapid dark repression of 5-aminolevulinic acid synthesis in green barley leaves. Richter A; Peter E; Pörs Y; Lorenzen S; Grimm B; Czarnecki O Plant Cell Physiol; 2010 May; 51(5):670-81. PubMed ID: 20375109 [TBL] [Abstract][Full Text] [Related]
8. The distribution of NADPH-protochlorophyllide oxidoreductase in relation to chlorophyll accumulation along the barley leaf gradient. Dehesh K; Häuser I; Apel K; Kloppstech K Planta; 1983 Jun; 158(2):134-9. PubMed ID: 24264542 [TBL] [Abstract][Full Text] [Related]
9. Aminolevulinic acid dehydratase in pea (Pisum sativum L.). Identification of an unusual metal-binding domain in the plant enzyme. Boese QF; Spano AJ; Li JM; Timko MP J Biol Chem; 1991 Sep; 266(26):17060-6. PubMed ID: 1894602 [TBL] [Abstract][Full Text] [Related]
10. Growth of tobacco in short-day conditions leads to high starch, low sugars, altered diurnal changes in the Nia transcript and low nitrate reductase activity, and inhibition of amino acid synthesis. Matt P; Schurr U; Klein D; Krapp A; Stitt M Planta; 1998 Dec; 207(1):27-41. PubMed ID: 9951717 [TBL] [Abstract][Full Text] [Related]
11. A novel insight into the regulation of light-independent chlorophyll biosynthesis in Larix decidua and Picea abies seedlings. Demko V; Pavlovic A; Valková D; Slováková L; Grimm B; Hudák J Planta; 2009 Jun; 230(1):165-76. PubMed ID: 19404675 [TBL] [Abstract][Full Text] [Related]
12. Misregulation of tetrapyrrole biosynthesis in transgenic tobacco seedlings expressing mammalian biliverdin reductase. Franklin KA; Linley PJ; Montgomery BL; Lagarias JC; Thomas B; Jackson SD; Terry MJ Plant J; 2003 Sep; 35(6):717-28. PubMed ID: 12969425 [TBL] [Abstract][Full Text] [Related]
13. Both light-dependent protochlorophyllide oxidoreductase A and protochlorophyllide oxidoreductase B are down-regulated in the slender mutant of barley. Ougham HJ; Thomas AM; Thomas BJ; Frick GA; Armstrong GA J Exp Bot; 2001 Jul; 52(360):1447-54. PubMed ID: 11457904 [TBL] [Abstract][Full Text] [Related]
14. Light-induced changes in the amounts of the 36000-Mr polypeptide of NADPH-protochlorophyllide oxidoreductase and its mRNA in barley plants grown under a diurnal light/dark cycle. Häuser I; Dehesh K; Apel K Planta; 1987 Apr; 170(4):453-60. PubMed ID: 24233008 [TBL] [Abstract][Full Text] [Related]
15. Light and dark modulation of chlorophyll biosynthetic genes in response to temperature. Mohanty S; Grimm B; Tripathy BC Planta; 2006 Aug; 224(3):692-9. PubMed ID: 16523349 [TBL] [Abstract][Full Text] [Related]
16. Photodynamic action of uroporphyrin and protochlorophyllide in greening barley leaves treated with cesium chloride. Shalygo NV; Mock HP; Averina NG; Grimm B J Photochem Photobiol B; 1998 Feb; 42(2):151-8. PubMed ID: 9540221 [TBL] [Abstract][Full Text] [Related]
17. Elimination of POR expression correlates with red leaf formation in Amaranthus tricolor. Iwamoto K; Fukuda H; Sugiyama M Plant J; 2001 Aug; 27(4):275-84. PubMed ID: 11532173 [TBL] [Abstract][Full Text] [Related]
18. Differential regulation of the accumulation of the light-harvesting chlorophyll a/b complex and ribulose bisphosphate carboxylase/oxygenase in greening pea leaves. Bennett J; Jenkins GI; Hartley MR J Cell Biochem; 1984; 25(1):1-13. PubMed ID: 6470048 [TBL] [Abstract][Full Text] [Related]
19. Initial characterization of a pea mutant with light-independent photomorphogenesis. Frances S; White MJ; Edgerton MD; Jones AM; Elliott RC; Thompson WF Plant Cell; 1992 Dec; 4(12):1519-30. PubMed ID: 1467651 [TBL] [Abstract][Full Text] [Related]