These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 12232433)

  • 1. Use of a Gouy-Chapman-Stern Model for Membrane-Surface Electrical Potential to Interpret Some Features of Mineral Rhizotoxicity.
    Kinraide TB
    Plant Physiol; 1994 Dec; 106(4):1583-1592. PubMed ID: 12232433
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnesium is more efficient than calcium in alleviating aluminum rhizotoxicity in soybean and its ameliorative effect is not explained by the Gouy-Chapman-Stern model.
    Silva IR; Smyth TJ; Israel DW; Raper CD; Rufty TW
    Plant Cell Physiol; 2001 May; 42(5):538-45. PubMed ID: 11382821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computation of surface electrical potentials of plant cell membranes . Correspondence To published zeta potentials from diverse plant sources.
    Kinraide TB; Yermiyahu U; Rytwo G
    Plant Physiol; 1998 Oct; 118(2):505-12. PubMed ID: 9765535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Binding and electrostatic attraction of lanthanum (La3+) and aluminum (Al3+) to wheat root plasma membranes.
    Yermiyahu U; Rytwo G; Brauer DK; Kinraide TB
    J Membr Biol; 1997 Oct; 159(3):239-52. PubMed ID: 9312213
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three mechanisms for the calcium alleviation of mineral toxicities.
    Kinraide TB
    Plant Physiol; 1998 Oct; 118(2):513-20. PubMed ID: 9765536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sorption of Aluminum to Plasma Membrane Vesicles Isolated from Roots of Scout 66 and Atlas 66 Cultivars of Wheat.
    Yermiyahu U; Brauer DK; Kinraide TB
    Plant Physiol; 1997 Nov; 115(3):1119-1125. PubMed ID: 12223862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactive effects of Al, h, and other cations on root elongation considered in terms of cell-surface electrical potential.
    Kinraide TB; Ryan PR; Kochian LV
    Plant Physiol; 1992 Aug; 99(4):1461-8. PubMed ID: 16669059
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell membrane surface potential (psi0) plays a dominant role in the phytotoxicity of copper and arsenate.
    Wang P; Zhou D; Kinraide TB; Luo X; Li L; Li D; Zhang H
    Plant Physiol; 2008 Dec; 148(4):2134-43. PubMed ID: 18829983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface potential reflected in both gating and permeation mechanisms of sodium and calcium channels of the tunicate egg cell membrane.
    Ohmori H; Yoshii M
    J Physiol; 1977 May; 267(2):429-63. PubMed ID: 17734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Emergence of a Stern Layer from the Incorporation of Hydration Interactions into the Gouy-Chapman Model of the Electrical Double Layer.
    Brown MA; Bossa GV; May S
    Langmuir; 2015 Oct; 31(42):11477-83. PubMed ID: 26474036
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction between dissimilar double layers with like signs under charge regulation on the basis of the Gouy-Chapman-Stern-Grahame model.
    Usui S
    J Colloid Interface Sci; 2004 Dec; 280(1):113-9. PubMed ID: 15476781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The surface charge density of plant cell membranes (sigma): an attempt to resolve conflicting values for intrinsic sigma.
    Kinraide TB; Wang P
    J Exp Bot; 2010 May; 61(9):2507-18. PubMed ID: 20435694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrical double layer interactions between dissimilar oxide surfaces with charge regulation and Stern-Grahame layers.
    Chan DY; Healy TW; Supasiti T; Usui S
    J Colloid Interface Sci; 2006 Apr; 296(1):150-8. PubMed ID: 16209871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling rhizotoxicity and uptake of Zn and Co singly and in binary mixture in wheat in terms of the cell membrane surface electrical potential.
    Wang YM; Kinraide TB; Wang P; Zhou DM; Hao XZ
    Environ Sci Technol; 2013 Mar; 47(6):2831-8. PubMed ID: 23405885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling the interaction and toxicity of Cu-Cd mixture to wheat roots affected by humic acids, in terms of cell membrane surface characteristics.
    Wang YM; Zhou DM; Yuan XY; Zhang XH; Li Y
    Chemosphere; 2018 May; 199():76-83. PubMed ID: 29433030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Possible influence of cell walls upon ion concentrations at plasma membrane surfaces. Toward a comprehensive view of cell-surface electrical effects upon ion uptake, intoxication, and amelioration.
    Kinraide TB
    Plant Physiol; 2004 Nov; 136(3):3804-13. PubMed ID: 15489281
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A few comments on electrostatic interactions in cell physiology.
    Genet S; Costalat R; Burger J
    Acta Biotheor; 2000 Dec; 48(3-4):273-87. PubMed ID: 11291945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aluminum enhancement of plant growth in acid rooting media. A case of reciprocal alleviation of toxicity by two toxic cations.
    Kinraide TB
    Physiol Plant; 1993 Aug; 88(4):619-625. PubMed ID: 28741770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface Electrical Potentials of Root Cell Plasma Membranes: Implications for Ion Interactions, Rhizotoxicity, and Uptake.
    Wang YM; Kinraide TB; Wang P; Hao XZ; Zhou DM
    Int J Mol Sci; 2014 Dec; 15(12):22661-22677. PubMed ID: 25493475
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of external protons on single cardiac sodium channels from guinea pig ventricular myocytes.
    Zhang JF; Siegelbaum SA
    J Gen Physiol; 1991 Dec; 98(6):1065-83. PubMed ID: 1664454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.