BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 12232439)

  • 1. Intrathylakoid pH in Isolated Pea Chloroplasts as Probed by Violaxanthin Deepoxidation.
    Pfundel EE; Renganathan M; Gilmore AM; Yamamoto HY; Dilley RA
    Plant Physiol; 1994 Dec; 106(4):1647-1658. PubMed ID: 12232439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Xanthophyll cycle-dependent nonphotochemical quenching in Photosystem II: Mechanistic insights gained from Arabidopsis thaliana L. mutants that lack violaxanthin deepoxidase activity and/or lutein.
    Gilmore AM
    Photosynth Res; 2001; 67(1-2):89-101. PubMed ID: 16228319
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of violaxanthin deepoxidation by ultraviolet-B radiation in isolated chloroplasts and intact leaves.
    Pfündel EE; Pan RS; Dilley RA
    Plant Physiol; 1992 Apr; 98(4):1372-80. PubMed ID: 16668802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of Ca(2+) on the thylakoid lumen violaxanthin de-epoxidase activity through Ca(2+) gating of H(+) flux at the CF(o) H(+) channel.
    Pan RS; Dilley RA
    Photosynth Res; 2000; 65(2):141-54. PubMed ID: 16228481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence that localized energy coupling in thylakoids can continue beyond the energetic threshold onset into steady illumination.
    Renganathan M; Pan RS; Ewy RG; Theg SM; Allnutt FC; Dilley RA
    Biochim Biophys Acta; 1991 Aug; 1059(1):16-27. PubMed ID: 1651763
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light-induced Changes of the Carotenoid Levels in Chloroplast Envelopes.
    Siefermann-Harms D
    Plant Physiol; 1978 Apr; 61(4):530-3. PubMed ID: 16660330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The pH Dependence of Violaxanthin Deepoxidation in Isolated Pea Chloroplasts.
    Pfundel EE; Dilley RA
    Plant Physiol; 1993 Jan; 101(1):65-71. PubMed ID: 12231666
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple Effects of Dithiothreitol on Nonphotochemical Fluorescence Quenching in Intact Chloroplasts (Influence on Violaxanthin De-epoxidase and Ascorbate Peroxidase Activity).
    Neubauer C
    Plant Physiol; 1993 Oct; 103(2):575-583. PubMed ID: 12231962
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence that the intrinsic membrane protein LHCII in thylakoids is necessary for maintaining localized delta mu H+ energy coupling.
    Renganathan M; Dilley RA
    J Bioenerg Biomembr; 1994 Feb; 26(1):117-25. PubMed ID: 8027017
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dark induction of zeaxanthin-dependent nonphotochemical fluorescence quenching mediated by ATP.
    Gilmore AM; Yamamoto HY
    Proc Natl Acad Sci U S A; 1992 Mar; 89(5):1899-903. PubMed ID: 1542689
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of thermal dissipation of absorbed excitation energy and violaxanthin deepoxidation in the thylakoids of lactuca sativa. Photoprotective mechanism of a population of photosystem II centers.
    Delrieu MJ
    Biochim Biophys Acta; 1998 Feb; 1363(2):157-73. PubMed ID: 9507102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative analysis of the effects of intrathylakoid pH and xanthophyll cycle pigments on chlorophyll a fluorescence lifetime distributions and intensity in thylakoids.
    Gilmore AM; Shinkarev VP; Hazlett TL; Govindjee G
    Biochemistry; 1998 Sep; 37(39):13582-93. PubMed ID: 9753445
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zeaxanthin Formation and Energy-Dependent Fluorescence Quenching in Pea Chloroplasts under Artificially Mediated Linear and Cyclic Electron Transport.
    Gilmore AM; Yamamoto HY
    Plant Physiol; 1991 Jun; 96(2):635-43. PubMed ID: 16668233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The kinetics of zeaxanthin formation is retarded by dicyclohexylcarbodiimide.
    Heyde S; Jahns P
    Plant Physiol; 1998 Jun; 117(2):659-65. PubMed ID: 9625719
    [TBL] [Abstract][Full Text] [Related]  

  • 15. pH dependent chlorophyll fluorescence quenching in spinach thylakoids from light treated or dark adapted leaves.
    Rees D; Noctor G; Ruban AV; Crofts J; Young A; Horton P
    Photosynth Res; 1992 Jan; 31(1):11-9. PubMed ID: 24407925
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lateral heterogeneity of the proton potential along the thylakoid membranes of chloroplasts.
    Vershubskii AV; Trubitsin BV; Priklonskii VI; Tikhonov AN
    Biochim Biophys Acta Biomembr; 2017 Mar; 1859(3):388-401. PubMed ID: 27916634
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protons in the thylakoid membrane-sequestered domains can directly pass through the coupling factor during ATP synthesis in flashing light.
    Theg SM; Chiang G; Dilley RA
    J Biol Chem; 1988 Jan; 263(2):673-81. PubMed ID: 2891700
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of ascorbate and the Mehler peroxidase reaction on non-photochemical quenching of chlorophyll fluorescence in maize mesophyll chloroplasts.
    Ivanov B; Edwards G
    Planta; 2000 Apr; 210(5):765-74. PubMed ID: 10805448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The thylakoid proton motive force in vivo. Quantitative, non-invasive probes, energetics, and regulatory consequences of light-induced pmf.
    Takizawa K; Cruz JA; Kanazawa A; Kramer DM
    Biochim Biophys Acta; 2007 Oct; 1767(10):1233-44. PubMed ID: 17765199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A kinetic model of rapidly reversible nonphotochemical quenching.
    Zaks J; Amarnath K; Kramer DM; Niyogi KK; Fleming GR
    Proc Natl Acad Sci U S A; 2012 Sep; 109(39):15757-62. PubMed ID: 22891305
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.