BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 12232664)

  • 21. Effects of a Saccharomyces cerevisiae culture on ruminal bacteria that utilize lactate and digest cellulose.
    Callaway ES; Martin SA
    J Dairy Sci; 1997 Sep; 80(9):2035-44. PubMed ID: 9313145
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Short communication: Does early-life administration of a Megasphaera elsdenii probiotic affect long-term establishment of the organism in the rumen and alter rumen metabolism in the dairy calf?
    Yohe TT; Enger BD; Wang L; Tucker HLM; Ceh CA; Parsons CLM; Yu Z; Daniels KM
    J Dairy Sci; 2018 Feb; 101(2):1747-1751. PubMed ID: 29174148
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Allisonella histaminiformans gen. nov., sp. nov. A novel bacterium that produces histamine, utilizes histidine as its sole energy source, and could play a role in bovine and equine laminitis.
    Garner MR; Flint JF; Russell JB
    Syst Appl Microbiol; 2002 Dec; 25(4):498-506. PubMed ID: 12583709
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fermentation of peptides and amino acids by a monensin-sensitive ruminal Peptostreptococcus.
    Chen GJ; Russell JB
    Appl Environ Microbiol; 1988 Nov; 54(11):2742-9. PubMed ID: 2975156
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ammonia production by ruminal microorganisms and enumeration, isolation, and characterization of bacteria capable of growth on peptides and amino acids from the sheep rumen.
    Eschenlauer SC; McKain N; Walker ND; McEwan NR; Newbold CJ; Wallace RJ
    Appl Environ Microbiol; 2002 Oct; 68(10):4925-31. PubMed ID: 12324340
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enumeration of Megasphaera elsdenii in rumen contents by real-time Taq nuclease assay.
    Ouwerkerk D; Klieve AV; Forster RJ
    J Appl Microbiol; 2002; 92(4):753-8. PubMed ID: 11966917
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ruminal biohydrogenation as affected by tannins in vitro.
    Vasta V; Makkar HP; Mele M; Priolo A
    Br J Nutr; 2009 Jul; 102(1):82-92. PubMed ID: 19063768
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Factors affecting lysine degradation by ruminal fusobacteria.
    Russell JB
    FEMS Microbiol Ecol; 2006 Apr; 56(1):18-24. PubMed ID: 16542401
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Changes in ruminal concentrations of microbial ammonia and amino acids due to monensin and time.
    Rodriguez SL; Craig WM; Hembry FG
    J Anim Sci; 1986 Dec; 63(6):1990-5. PubMed ID: 3818471
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A novel bifunctional endo-/exo-type cellulase from an anaerobic ruminal bacterium.
    Ko KC; Han Y; Choi JH; Kim GJ; Lee SG; Song JJ
    Appl Microbiol Biotechnol; 2011 Mar; 89(5):1453-62. PubMed ID: 21046376
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of sulfur supplements on cellulolytic rumen micro-organisms and microbial protein synthesis in cattle fed a high fibre diet.
    McSweeney CS; Denman SE
    J Appl Microbiol; 2007 Nov; 103(5):1757-65. PubMed ID: 17953586
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantitative analysis of growth and volatile fatty acid production by the anaerobic ruminal bacterium Megasphaera elsdenii T81.
    Weimer PJ; Moen GN
    Appl Microbiol Biotechnol; 2013 May; 97(9):4075-81. PubMed ID: 23271673
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Isolation of tetracycline-resistant Megasphaera elsdenii strains with novel mosaic gene combinations of tet(O) and tet(W) from swine.
    Stanton TB; Humphrey SB
    Appl Environ Microbiol; 2003 Jul; 69(7):3874-82. PubMed ID: 12839756
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modeling of growth, lactate consumption, and volatile fatty acid production by Megasphaera elsdenii cultivated in minimal and complex media.
    Soto-Cruz O; Favela-Torres E; Saucedo-Castañeda G
    Biotechnol Prog; 2002; 18(2):193-200. PubMed ID: 11934285
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Different restriction and modification phenotypes in ruminal lactate-utilizing bacteria.
    Piknova M; Filova M; Javorsky P; Pristas P
    FEMS Microbiol Lett; 2004 Jul; 236(1):91-5. PubMed ID: 15212796
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bacteriocin-like activity of Butyrivibrio fibrisolvens JL5 and its effect on other ruminal bacteria and ammonia production.
    Rychlik JL; Russell JB
    Appl Environ Microbiol; 2002 Mar; 68(3):1040-6. PubMed ID: 11872448
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lactic acid-utilizing bacteria in ruminal fluid of a steer adapted from hay feeding to a high-grain ration.
    Huber TL; Cooley JH; Goetsch DD; Das NK
    Am J Vet Res; 1976 May; 37(5):611-3. PubMed ID: 1275348
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of monensin and a protonophore on protein degradation, peptide accumulation, and deamination by mixed ruminal microorganisms in vitro.
    Chen GJ; Russell JB
    J Anim Sci; 1991 May; 69(5):2196-203. PubMed ID: 1829725
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of Aspergillus oryzae extract alone or in combination with antimicrobial compounds on ruminal bacteria.
    Beharka AA; Nagaraja TG
    J Dairy Sci; 1998 Jun; 81(6):1591-8. PubMed ID: 9684165
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of monensin feeding and withdrawal on populations of individual bacterial species in the rumen of lactating dairy cows fed high-starch rations.
    Weimer PJ; Stevenson DM; Mertens DR; Thomas EE
    Appl Microbiol Biotechnol; 2008 Aug; 80(1):135-45. PubMed ID: 18535825
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.