These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 12232664)

  • 61. Cloacibacillus evryensis gen. nov., sp. nov., a novel asaccharolytic, mesophilic, amino-acid-degrading bacterium within the phylum 'Synergistetes', isolated from an anaerobic sludge digester.
    Ganesan A; Chaussonnerie S; Tarrade A; Dauga C; Bouchez T; Pelletier E; Le Paslier D; Sghir A
    Int J Syst Evol Microbiol; 2008 Sep; 58(Pt 9):2003-12. PubMed ID: 18768595
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The ability of "low G + C gram-positive" ruminal bacteria to resist monensin and counteract potassium depletion.
    Callaway TR; Adams KA; Russell JB
    Curr Microbiol; 1999 Oct; 39(4):226-30. PubMed ID: 10486059
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Effects of the ionophore tetronasin on nitrogen metabolism by ruminal microorganisms in vitro.
    Newbold CJ; Wallace RJ; McKain N
    J Anim Sci; 1990 Apr; 68(4):1103-9. PubMed ID: 2332385
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Caloramator australicus sp. nov., a thermophilic, anaerobic bacterium from the Great Artesian Basin of Australia.
    Ogg CD; Patel BK
    Int J Syst Evol Microbiol; 2009 Jan; 59(Pt 1):95-101. PubMed ID: 19126731
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Effects of forage:concentrate ratio and forage type on apparent digestibility, ruminal fermentation, and microbial growth in goats.
    Cantalapiedra-Hijar G; Yáñez-Ruiz DR; Martín-García AI; Molina-Alcaide E
    J Anim Sci; 2009 Feb; 87(2):622-31. PubMed ID: 18952730
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Identification of rumen bacteria that anaerobically degrade nitrite.
    Cheng KJ; Phillippe RC; Majak W
    Can J Microbiol; 1988 Sep; 34(9):1099-102. PubMed ID: 3214813
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Concentration of ammonia across cell membranes of mixed rumen bacteria.
    Russell JB; Strobel HJ
    J Dairy Sci; 1987 May; 70(5):970-6. PubMed ID: 3597937
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Syntrophomonas erecta subsp. sporosyntropha subsp. nov., a spore-forming bacterium that degrades short chain fatty acids in co-culture with methanogens.
    Wu C; Liu X; Dong X
    Syst Appl Microbiol; 2006 Sep; 29(6):457-62. PubMed ID: 16455220
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Genome sequence of the ruminal bacterium Megasphaera elsdenii.
    Marx H; Graf AB; Tatto NE; Thallinger GG; Mattanovich D; Sauer M
    J Bacteriol; 2011 Oct; 193(19):5578-9. PubMed ID: 21914887
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Potential influence of dairy propionibacteria on the growth and acid metabolism of Streptococcus bovis and Megasphaera elsdenii.
    Luo J; Ranadheera CS; King S; Evans CA; Baines SK
    Benef Microbes; 2017 Feb; 8(1):111-119. PubMed ID: 27824275
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Effect of monensin on breakdown of protein by ruminal microorganisms in vitro.
    Whetstone HD; Davis CL; Bryant MP
    J Anim Sci; 1981 Sep; 53(3):803-9. PubMed ID: 7319956
    [TBL] [Abstract][Full Text] [Related]  

  • 72. The use of PCR for the identification and characterisation of bacteriocin genes from bacterial strains isolated from rumen or caecal contents of cattle and sheep.
    Cookson AL; Noel SJ; Kelly WJ; Attwood GT
    FEMS Microbiol Ecol; 2004 May; 48(2):199-207. PubMed ID: 19712403
    [TBL] [Abstract][Full Text] [Related]  

  • 73. [Changes in the ruminal contents in suppurative surgical infection in cattle].
    Petrov M
    Vet Med Nauki; 1979; 16(5):29-34. PubMed ID: 44584
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Similarity of the ruminal bacteria across individual lactating cows.
    Jami E; Mizrahi I
    Anaerobe; 2012 Jun; 18(3):338-43. PubMed ID: 22546373
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Preferential isolation of Megasphaera elsdenii from pig feces.
    Kajihara Y; Yoshikawa S; Cho Y; Ito T; Miyamoto H; Kodama H
    Anaerobe; 2017 Dec; 48():160-164. PubMed ID: 28842275
    [TBL] [Abstract][Full Text] [Related]  

  • 76. [Formation of the intermediate products of the tricarboxylic acid cycle and ammonia from free amino acids in anoxic heart muscle].
    Pisarenko OI; Solomatina ES; Studneva IM
    Biokhimiia; 1986 Aug; 51(8):1276-85. PubMed ID: 3768433
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Relative contributions of ruminal bacteria and protozoa to the degradation of protein in vitro.
    Hino T; Russell JB
    J Anim Sci; 1987 Jan; 64(1):261-70. PubMed ID: 3818489
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Effect of reducing-equivalent disposal and NADH/NAD on deamination of amino acids by intact rumen microorganisms and their cell extracts.
    Hino T; Russell JB
    Appl Environ Microbiol; 1985 Dec; 50(6):1368-74. PubMed ID: 4091565
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Compositions and characteristics of strains of Streptococcus bovis.
    Russell JB; Robinson PH
    J Dairy Sci; 1984 Jul; 67(7):1525-31. PubMed ID: 6205028
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Eubacterium pyruvativorans sp. nov., a novel non-saccharolytic anaerobe from the rumen that ferments pyruvate and amino acids, forms caproate and utilizes acetate and propionate.
    Wallace RJ; McKain N; McEwan NR; Miyagawa E; Chaudhary LC; King TP; Walker ND; Apajalahti JHA; Newbold CJ
    Int J Syst Evol Microbiol; 2003 Jul; 53(Pt 4):965-970. PubMed ID: 12892112
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.