BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 12232731)

  • 1. Cadmium-fenitrothion interaction in the spider Pardosa lugubris and the fruit fly Drosophila melanogaster.
    Babczyńska A; Migula P
    Bull Environ Contam Toxicol; 2002 Oct; 69(4):586-92. PubMed ID: 12232731
    [No Abstract]   [Full Text] [Related]  

  • 2. Multilevel effects of sublethal fenitrothion exposure in Chironomus riparius Mg. (Diptera, Chironomidae) larvae.
    Choi J; Caquet T; Roche H
    Environ Toxicol Chem; 2002 Dec; 21(12):2725-30. PubMed ID: 12463571
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomarkers in caddisfly larvae of the species Hydropsyche pellucidula (Curtis, 1834) (Trichoptera: Hydropsychidae) measured in natural populations and after short term exposure to fenitrothion.
    Berra E; Forcella M; Giacchini R; Rossaro B; Parenti P
    Bull Environ Contam Toxicol; 2006 May; 76(5):863-70. PubMed ID: 16786458
    [No Abstract]   [Full Text] [Related]  

  • 4. Alterations of the acetylcholinesterase enzyme in the oriental fruit fly Bactrocera dorsalis are correlated with resistance to the organophosphate insecticide fenitrothion.
    Hsu JC; Wu WJ; Haymer DS; Liao HY; Feng HT
    Insect Biochem Mol Biol; 2008 Feb; 38(2):146-54. PubMed ID: 18207076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of selected biological properties of the hunting web spider (Steatoda grossa, Theridiidae) in the aspect of short- and long-term exposure to cadmium.
    Wilczek G; Karcz J; Rost-Roszkowska M; Kędziorski A; Wilczek P; Skowronek M; Wiśniewska K; Kaszuba F; Surmiak K
    Sci Total Environ; 2019 Mar; 656():297-306. PubMed ID: 30504028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Absence of cadmium excretion and high assimilation result in cadmium biomagnification in a wolf spider.
    Hendrickx F; Maelfait JP; Langenbick F
    Ecotoxicol Environ Saf; 2003 Jul; 55(3):287-92. PubMed ID: 12798762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutations in the acetylcholinesterase gene of Bactrocera dorsalis associated with resistance to organophosphorus insecticides.
    Hsu JC; Haymer DS; Wu WJ; Feng HT
    Insect Biochem Mol Biol; 2006 May; 36(5):396-402. PubMed ID: 16651186
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sublethal responses of wolf spiders (Lycosidae) to organophosphorous insecticides.
    Van Erp S; Booth L; Gooneratne R; O'Halloran K
    Environ Toxicol; 2002 Oct; 17(5):449-56. PubMed ID: 12242675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simple solid dose bioassay for insecticides using the fruit fly ( Drosophila melanogaster).
    Grant R
    Bull Environ Contam Toxicol; 2002 Jul; 69(1):35-40. PubMed ID: 12053254
    [No Abstract]   [Full Text] [Related]  

  • 10. Cognitive consonance: complex brain functions in the fruit fly and its relatives.
    Greenspan RJ; van Swinderen B
    Trends Neurosci; 2004 Dec; 27(12):707-11. PubMed ID: 15541510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Re: androgen receptor antagonism by the organophosphate insecticide fenitrothion.
    Goodman JI
    Toxicol Sci; 2001 Jul; 62(1):183. PubMed ID: 11399807
    [No Abstract]   [Full Text] [Related]  

  • 12. Spiders on a treadmill: influence of running activity on metabolic rates in Pardosa lugubris (Araneae, Lycosidae) and Marpissa muscosa (Araneae, Salticidae).
    Schmitz A
    J Exp Biol; 2005 Apr; 208(Pt 7):1401-11. PubMed ID: 15781900
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genotoxicity studies with four organophosphorus insecticides using the unstable white-zeste system of Drosophila melanogaster.
    Xamena N; Velázquez A; Batiste-Alentorn M; Creus A; Marcos R
    Mutat Res; 1988 Feb; 204(2):251-6. PubMed ID: 3125427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in mutagenicity during biodegradation of fenitrothion.
    Matsushita T; Matsui Y; Taniwaki S; Inoue T
    Chemosphere; 2002 Apr; 47(1):9-14. PubMed ID: 11996141
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution. Rogue fruit fly DNA offers protection from insecticides.
    Pennisi E
    Science; 2005 Jul; 309(5735):681. PubMed ID: 16051756
    [No Abstract]   [Full Text] [Related]  

  • 16. Apoptosis and biochemical biomarkers of stress in spiders from industrially polluted areas exposed to high temperature and dimethoate.
    Wilczek G
    Comp Biochem Physiol C Toxicol Pharmacol; 2005 Jun; 141(2):194-206. PubMed ID: 16039166
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Joint effects of density dependence and toxicant exposure on Drosophila melanogaster populations.
    Gui Y; Grant A
    Ecotoxicol Environ Saf; 2008 Jun; 70(2):236-43. PubMed ID: 17658601
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spiders as biological controllers in the agroecosystem.
    Chatterjee S; Isaia M; Venturino E
    J Theor Biol; 2009 Jun; 258(3):352-62. PubMed ID: 19135067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased alanine concentration is associated with exposure to fenitrothion but not carbamates in Chironomus riparius larvae.
    Forcella M; Berra E; Giacchini R; Rossaro B; Parenti P
    Ecotoxicol Environ Saf; 2007 Mar; 66(3):326-34. PubMed ID: 17166588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Eradication of mosquito larvae by means of home-prepared sand granules (author's transl)].
    Rettich F
    Cesk Epidemiol Mikrobiol Imunol; 1980 Mar; 29(2):99-104. PubMed ID: 6446982
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.