These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 12233739)

  • 1. A study of the spatial organisation of microbial cells in a gel matrix subjected to treatment with ultrasound standing waves.
    Gherardini L; Radel S; Sielemann S; Doblhoff-Dier O; Gröschl M; Benes E; McLoughlin AJ
    Bioseparation; 2001; 10(4-5):153-62. PubMed ID: 12233739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new immobilisation method to arrange particles in a gel matrix by ultrasound standing waves.
    Gherardini L; Cousins CM; Hawkes JJ; Spengler J; Radel S; Lawler H; Devcic-Kuhar B; Gröschl M; Coakley WT; McLoughlin AJ
    Ultrasound Med Biol; 2005 Feb; 31(2):261-72. PubMed ID: 15708466
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Viability of yeast cells in well controlled propagating and standing ultrasonic plane waves.
    Radel S; McLoughlin AJ; Gherardini L; Doblhoff-Dier O; Benes E
    Ultrasonics; 2000 Mar; 38(1-8):633-7. PubMed ID: 10829741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clarification of small volume microbial suspensions in an ultrasonic standing wave.
    Limaye MS; Coakley WT
    J Appl Microbiol; 1998 Jun; 84(6):1035-42. PubMed ID: 9717288
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Breakdown of immobilisation/separation and morphology changes of yeast suspended in water-rich ethanol mixtures exposed to ultrasonic plane standing waves.
    Radel S; Gherardini L; McLoughlin AJ; Doblhoff-Dier O; Benes E
    Bioseparation; 2000; 9(6):369-77. PubMed ID: 11518240
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ethanol production using immobilized Saccharomyces cerevisiae in lyophilized cellulose gel.
    Winkelhausen E; Velickova E; Amartey SA; Kuzmanova S
    Appl Biochem Biotechnol; 2010 Dec; 162(8):2214-20. PubMed ID: 20512428
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of ultrasonic standing wave in biological studies and cell technologies.
    Pashovkin TN; Sadikova DG; Pashovkina MS; Shil'nikov GV
    Bull Exp Biol Med; 2007 Jul; 144(1):118-22. PubMed ID: 18256768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrasonic manipulation of particles and cells. Ultrasonic separation of cells.
    Coakley WT; Whitworth G; Grundy MA; Gould RK; Allman R
    Bioseparation; 1994 Apr; 4(2):73-83. PubMed ID: 7765041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Observation of yeast cell movement and aggregation in a small-scale MHz-ultrasonic standing wave field.
    Spengler JF; Jekel M; Christensen KT; Adrian RJ; Hawkes JJ; Coakley WT
    Bioseparation; 2000; 9(6):329-41. PubMed ID: 11518236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microparticle manipulation in millimetre scale ultrasonic standing wave chambers.
    Hawkes JJ; Barrow D; Coakley WT
    Ultrasonics; 1998 Aug; 36(9):925-31. PubMed ID: 9735860
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Concentration measurement of yeast suspensions using high frequency ultrasound backscattering.
    Elvira L; Vera P; Cañadas FJ; Shukla SK; Montero F
    Ultrasonics; 2016 Jan; 64():151-61. PubMed ID: 26361271
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transglutaminase-induced gelation properties of soy protein isolate and wheat gluten mixtures with high intensity ultrasonic pretreatment.
    Qin XS; Luo SZ; Cai J; Zhong XY; Jiang ST; Zhao YY; Zheng Z
    Ultrason Sonochem; 2016 Jul; 31():590-7. PubMed ID: 26964986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatiotemporal dynamics of glycolytic waves provides new insights into the interactions between immobilized yeast cells and gels.
    Bolyó J; Mair T; Kuncová G; Hauser MJ
    Biophys Chem; 2010 Dec; 153(1):54-60. PubMed ID: 21041014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical evaluation of the acoustic field in an ultrasonic bioreactor.
    Louw TM; Subramanian A; Viljoen HJ
    Ultrasound Med Biol; 2015 Jun; 41(6):1766-78. PubMed ID: 25771444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell viability and proteins release during ultrasound-assisted yeast lysis of light lees in model wine.
    García Martín JF; Guillemet L; Feng C; Sun DW
    Food Chem; 2013 Nov; 141(2):934-9. PubMed ID: 23790870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Manipulation of microparticles using phase-controllable ultrasonic standing waves.
    Courtney CR; Ong CK; Drinkwater BW; Wilcox PD; Demore C; Cochran S; Glynne-Jones P; Hill M
    J Acoust Soc Am; 2010 Oct; 128(4):EL195-9. PubMed ID: 20968325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrasonic analysis of rennet-induced pre-gelation and gelation processes in milk.
    Dwyer C; Donnelly L; Buckin V
    J Dairy Res; 2005 Aug; 72(3):303-10. PubMed ID: 16174361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Filtration of bacteria and yeast by ultrasound-enhanced sedimentation.
    Hawkes JJ; Limaye MS; Coakley WT
    J Appl Microbiol; 1997 Jan; 82(1):39-47. PubMed ID: 9113876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Patterns in Saccharomyces cerevisiae yeast colonies via magnetic resonance imaging.
    Tenório RP; Barros W
    Integr Biol (Camb); 2017 Jan; 9(1):68-75. PubMed ID: 27942686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonviral transfection of suspension cells in ultrasound standing wave fields.
    Lee YH; Peng CA
    Ultrasound Med Biol; 2007 May; 33(5):734-42. PubMed ID: 17383802
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.