These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 12234350)

  • 1. Culture conditions influencing phytase production of Mitsuokella jalaludinii, a new bacterial species from the rumen of cattle.
    Lan GQ; Abdullah N; Jalaludin S; Ho YW
    J Appl Microbiol; 2002; 93(4):668-74. PubMed ID: 12234350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of carbon and nitrogen sources for phytase production by Mitsuokella jalaludinii, a new rumen bacterial species.
    Lan GQ; Abdullah N; Jalaludin S; Ho Y
    Lett Appl Microbiol; 2002; 35(2):157-61. PubMed ID: 12100593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitsuokella jalaludinii sp. nov., from the rumens of cattle in Malaysia.
    Lan GQ; Ho YW; Abdullah N
    Int J Syst Evol Microbiol; 2002 May; 52(Pt 3):713-718. PubMed ID: 12054230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermostable phytase production by Thermoascus aurantiacus in submerged fermentation.
    Nampoothiri KM; Tomes GJ; Roopesh K; Szakacs G; Nagy V; Soccol CR; Pandey A
    Appl Biochem Biotechnol; 2004; 118(1-3):205-14. PubMed ID: 15304750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved production of protease-resistant phytase by Aspergillus oryzae and its applicability in the hydrolysis of insoluble phytates.
    Sapna ; Singh B
    J Ind Microbiol Biotechnol; 2013 Aug; 40(8):891-9. PubMed ID: 23652971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of freeze-dried Mitsuokella jalaludinii culture and Natuphos(®) phytase supplementation on the performance and nutrient utilisation of broiler chickens.
    Lan G; Abdullah N; Jalaludin S; Ho YW
    J Sci Food Agric; 2012 Jan; 92(2):266-73. PubMed ID: 21796639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phytase activity of anaerobic ruminal bacteria.
    Yanke LJ; Bae HD; Selinger LB; Cheng KJ
    Microbiology (Reading); 1998 Jun; 144 ( Pt 6)():1565-1573. PubMed ID: 9639927
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phytase production by Sporotrichum thermophile in a cost-effective cane molasses medium in submerged fermentation and its application in bread.
    Singh B; Satyanarayana T
    J Appl Microbiol; 2008 Dec; 105(6):1858-65. PubMed ID: 19120634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced phytase production from Achromobacter sp. PB-01 using wheat bran as substrate: prospective application for animal feed.
    Kumar P; Chamoli S; Agrawal S
    Biotechnol Prog; 2012; 28(6):1432-42. PubMed ID: 22915503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced submerged Aspergillus ficuum phytase production by implementation of fed-batch fermentation.
    Coban HB; Demirci A
    Bioprocess Biosyst Eng; 2014 Dec; 37(12):2579-86. PubMed ID: 24958522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced Phytase Production by Bacillus subtilis subsp. subtilis in Solid State Fermentation and its Utility in Improving Food Nutrition.
    Singh B; Kumar G; Kumar V; Singh D
    Protein Pept Lett; 2021; 28(10):1083-1089. PubMed ID: 34303326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Purification and characterization of phytase from Klebsiella pneumoniae 9-3B.
    Escobin-Mopera L; Ohtani M; Sekiguchi S; Sone T; Abe A; Tanaka M; Meevootisom V; Asano K
    J Biosci Bioeng; 2012 May; 113(5):562-7. PubMed ID: 22244916
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential phytate utilization in Candida species.
    Tsang PW
    Mycopathologia; 2011 Dec; 172(6):473-9. PubMed ID: 21792623
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Screening of phytase producers and optimization of culture conditions for submerged fermentation.
    Coban HB; Demirci A
    Bioprocess Biosyst Eng; 2014 Apr; 37(4):609-16. PubMed ID: 23943047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production and characterization of thermostable alkaline phytase from Bacillus laevolacticus isolated from rhizosphere soil.
    Gulati HK; Chadha BS; Saini HS
    J Ind Microbiol Biotechnol; 2007 Jan; 34(1):91-8. PubMed ID: 16967265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative enzymatic hydrolysis of phytate in various animal feedstuff with two different phytases.
    Park SC; Choi YW; Oh TK
    J Vet Med Sci; 1999 Nov; 61(11):1257-9. PubMed ID: 10593587
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diversity, abundance and characterization of ruminal cysteine phytases suggest their important role in phytate degradation.
    Huang H; Zhang R; Fu D; Luo J; Li Z; Luo H; Shi P; Yang P; Diao Q; Yao B
    Environ Microbiol; 2011 Mar; 13(3):747-57. PubMed ID: 21105982
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Valorisation of untreated cane molasses for enhanced phytase production by Bacillus subtilis K46b and its potential role in dephytinisation.
    Rocky-Salimi K; Hashemi M; Safari M; Mousivand M
    J Sci Food Agric; 2017 Jan; 97(1):222-229. PubMed ID: 26991843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Screening of phytase-producing strain and its optimal solid state phytase-producing conditions].
    Wang S; Hu K; Lin W
    Ying Yong Sheng Tai Xue Bao; 2005 Nov; 16(11):2154-7. PubMed ID: 16471358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A marked enhancement in phytase production by a thermophilic mould Sporotrichum thermophile using statistical designs in a cost-effective cane molasses medium.
    Singh B; Satyanarayana T
    J Appl Microbiol; 2006 Aug; 101(2):344-52. PubMed ID: 16882141
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.