BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 12234492)

  • 1. Kinetic studies of guanine recognition and a phosphate group subsite on ribonuclease T1 using substitution mutants at Glu46 and Lys41.
    Jo Chitester B; Walz FG
    Arch Biochem Biophys; 2002 Oct; 406(1):73-7. PubMed ID: 12234492
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing functional perfection in substructures of ribonuclease T1: double combinatorial random mutagenesis involving Asn43, Asn44, and Glu46 in the guanine binding loop.
    Kumar K; Walz FG
    Biochemistry; 2001 Mar; 40(12):3748-57. PubMed ID: 11297444
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modification of ribonuclease T1 specificity by random mutagenesis of the substrate binding segment.
    Hubner B; Haensler M; Hahn U
    Biochemistry; 1999 Jan; 38(4):1371-6. PubMed ID: 9931000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative analysis of the contribution of Glu46 and Asn98 to the guanosine specificity of ribonuclease T1.
    Steyaert J; Opsomer C; Wyns L; Stanssens P
    Biochemistry; 1991 Jan; 30(2):494-9. PubMed ID: 1899029
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The subsite structures of guanine-specific ribonucleases and a guanine-preferential ribonuclease. Cleavage of oligoinosinic acids and poly I.
    Watanabe H; Ando E; Ohgi K; Irie M
    J Biochem; 1985 Nov; 98(5):1239-45. PubMed ID: 3936847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dissection of the ribonuclease T1 subsite. The transesterification kinetics of Asn36Ala and Asn98Ala ribonuclease T1 for minimal dinucleoside phosphates.
    Steyaert J; Haikal AF; Stanssens P; Wyns L
    Eur J Biochem; 1992 Feb; 203(3):551-5. PubMed ID: 1735439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RNase T1 variant RV cleaves single-stranded RNA after purines due to specific recognition by the Asn46 side chain amide.
    Czaja R; Struhalla M; Höschler K; Saenger W; Sträter N; Hahn U
    Biochemistry; 2004 Mar; 43(10):2854-62. PubMed ID: 15005620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Domain swapping in ribonuclease T1 allows the acquisition of double-stranded activity.
    Chen DT; Lin A
    Protein Eng; 2002 Dec; 15(12):997-1003. PubMed ID: 12601139
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutational, kinetic, and NMR studies of the roles of conserved glutamate residues and of lysine-39 in the mechanism of the MutT pyrophosphohydrolase.
    Harris TK; Wu G; Massiah MA; Mildvan AS
    Biochemistry; 2000 Feb; 39(7):1655-74. PubMed ID: 10677214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contribution of active site residues to the activity and thermal stability of ribonuclease Sa.
    Yakovlev GI; Mitkevich VA; Shaw KL; Trevino S; Newsom S; Pace CN; Makarov AA
    Protein Sci; 2003 Oct; 12(10):2367-73. PubMed ID: 14500895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subsite interactions of ribonuclease T1: viscosity effects indicate that the rate-limiting step of GpN transesterification depends on the nature of N.
    Steyaert J; Wyns L; Stanssens P
    Biochemistry; 1991 Sep; 30(35):8661-5. PubMed ID: 1909570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Subsite interactions of ribonuclease T1: Asn36 and Asn98 accelerate GpN transesterification through interactions with the leaving nucleoside N.
    Steyaert J; Haikal AF; Wyns L; Stanssens P
    Biochemistry; 1991 Sep; 30(35):8666-70. PubMed ID: 1653603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural analysis of an RNase T1 variant with an altered guanine binding segment.
    Höschler K; Hoier H; Hubner B; Saenger W; Orth P; Hahn U
    J Mol Biol; 1999 Dec; 294(5):1231-8. PubMed ID: 10600381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of the functional interplay between the primary site and the subsite of RNase T1: kinetic analysis of single and multiple mutants for modified substrates.
    Steyaert J; Haikal AF; Wyns L
    Proteins; 1994 Apr; 18(4):318-23. PubMed ID: 8208724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computer modeling studies on the binding of 2',5'-linked dinucleoside phosphates to ribonuclease T1-influence of subsite interactions on the substrate specificity.
    Balaji PV; Saenger W; Rao VS
    J Biomol Struct Dyn; 1993 Apr; 10(5):891-903. PubMed ID: 8391269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. His92Ala mutation in ribonuclease T1 induces segmental flexibility. An X-ray study.
    Koellner G; Choe HW; Heinemann U; Grunert HP; Zouni A; Hahn U; Saenger W
    J Mol Biol; 1992 Apr; 224(3):701-13. PubMed ID: 1314902
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A catalytic function for the structurally conserved residue Phe 100 of ribonuclease T1.
    Doumen J; Gonciarz M; Zegers I; Loris R; Wyns L; Steyaert J
    Protein Sci; 1996 Aug; 5(8):1523-30. PubMed ID: 8844843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A single amino acid substitution in the human and a bacterial hypoxanthine phosphoribosyltransferase modulates specificity for the binding of guanine.
    Lee CC; Craig SP; Eakin AE
    Biochemistry; 1998 Mar; 37(10):3491-8. PubMed ID: 9521670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for a substrate-binding subsite in ribonuclease T1. Crystal structure of the complex with two guanosines, and model building of the complex with the substrate guanylyl-3',5'-guanosine.
    Lenz A; Cordes F; Heinemann U; Saenger W
    J Biol Chem; 1991 Apr; 266(12):7661-7. PubMed ID: 1902225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A phosphate-binding subsite in bovine pancreatic ribonuclease A can be converted into a very efficient catalytic site.
    Moussaoui M; Cuchillo CM; Nogués MV
    Protein Sci; 2007 Jan; 16(1):99-109. PubMed ID: 17192592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.