BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 12234637)

  • 1. Quantifying axial secretory-granule motion with variable-angle evanescent-field excitation.
    Loerke D; Stühmer W; Oheim M
    J Neurosci Methods; 2002 Sep; 119(1):65-73. PubMed ID: 12234637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visualization of regulated exocytosis with a granule-membrane probe using total internal reflection microscopy.
    Allersma MW; Wang L; Axelrod D; Holz RW
    Mol Biol Cell; 2004 Oct; 15(10):4658-68. PubMed ID: 15282339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tracking single secretory granules in live chromaffin cells by evanescent-field fluorescence microscopy.
    Steyer JA; Almers W
    Biophys J; 1999 Apr; 76(4):2262-71. PubMed ID: 10096921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Motion matters: secretory granule motion adjacent to the plasma membrane and exocytosis.
    Allersma MW; Bittner MA; Axelrod D; Holz RW
    Mol Biol Cell; 2006 May; 17(5):2424-38. PubMed ID: 16510523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Imaging of dynamic secretory vesicles in living pollen tubes of Picea meyeri using evanescent wave microscopy.
    Wang X; Teng Y; Wang Q; Li X; Sheng X; Zheng M; Samaj J; Baluska F; Lin J
    Plant Physiol; 2006 Aug; 141(4):1591-603. PubMed ID: 16798949
    [TBL] [Abstract][Full Text] [Related]  

  • 6. F-actin-myosin II inhibitors affect chromaffin granule plasma membrane distance and fusion kinetics by retraction of the cytoskeletal cortex.
    Villanueva J; Torres V; Torregrosa-Hetland CJ; Garcia-Martinez V; López-Font I; Viniegra S; Gutiérrez LM
    J Mol Neurosci; 2012 Oct; 48(2):328-38. PubMed ID: 22588981
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Observing secretory granules with a multiangle evanescent wave microscope.
    Rohrbach A
    Biophys J; 2000 May; 78(5):2641-54. PubMed ID: 10777760
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Restriction of secretory granule motion near the plasma membrane of chromaffin cells.
    Johns LM; Levitan ES; Shelden EA; Holz RW; Axelrod D
    J Cell Biol; 2001 Apr; 153(1):177-90. PubMed ID: 11285284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous evanescent wave imaging of insulin vesicle membrane and cargo during a single exocytotic event.
    Tsuboi T; Zhao C; Terakawa S; Rutter GA
    Curr Biol; 2000 Oct; 10(20):1307-10. PubMed ID: 11069115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The last few milliseconds in the life of a secretory granule. Docking, dynamics and fusion visualized by total internal reflection fluorescence microscopy (TIRFM).
    Oheim M; Loerke D; Stühmer W; Chow RH
    Eur Biophys J; 1998; 27(2):83-98. PubMed ID: 9530824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transport, docking and exocytosis of single secretory granules in live chromaffin cells.
    Steyer JA; Horstmann H; Almers W
    Nature; 1997 Jul; 388(6641):474-8. PubMed ID: 9242406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased motion and travel, rather than stable docking, characterize the last moments before secretory granule fusion.
    Degtyar VE; Allersma MW; Axelrod D; Holz RW
    Proc Natl Acad Sci U S A; 2007 Oct; 104(40):15929-34. PubMed ID: 17893335
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of changes in membrane surface morphology associated with exocytosis using scanning ion conductance microscopy.
    Shin W; Gillis KD
    Biophys J; 2006 Sep; 91(6):L63-5. PubMed ID: 16844756
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lipids implicated in the journey of a secretory granule: from biogenesis to fusion.
    Tanguy E; Carmon O; Wang Q; Jeandel L; Chasserot-Golaz S; Montero-Hadjadje M; Vitale N
    J Neurochem; 2016 Jun; 137(6):904-12. PubMed ID: 26877188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Imaging exocytosis of single insulin secretory granules with evanescent wave microscopy: distinct behavior of granule motion in biphasic insulin release.
    Ohara-Imaizumi M; Nakamichi Y; Tanaka T; Ishida H; Nagamatsu S
    J Biol Chem; 2002 Feb; 277(6):3805-8. PubMed ID: 11751926
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polarized TIRFM reveals changes in plasma membrane topology before and during granule fusion.
    Anantharam A; Axelrod D; Holz RW
    Cell Mol Neurobiol; 2010 Nov; 30(8):1343-9. PubMed ID: 21061164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Secretory granules: and the last shall be first..
    Solimena M; Gerdes HH
    Trends Cell Biol; 2003 Aug; 13(8):399-402. PubMed ID: 12888291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms of secretory granule transport and exocytosis in anterior pituitary cells.
    Senda T
    Ital J Anat Embryol; 1995; 100 Suppl 1():219-29. PubMed ID: 11322296
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Morphological and functional characterization of beige mouse adrenomedullary secretory vesicles.
    Borges R; Jaén R; Freire F; Gómez JF; Villafruela C; Yanes E
    Cell Tissue Res; 2001 Apr; 304(1):159-64. PubMed ID: 11383882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Localized topological changes of the plasma membrane upon exocytosis visualized by polarized TIRFM.
    Anantharam A; Onoa B; Edwards RH; Holz RW; Axelrod D
    J Cell Biol; 2010 Feb; 188(3):415-28. PubMed ID: 20142424
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.