BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 12234665)

  • 41. Fugu rubripes and human survival motor neuron genes: structural and functional similarities in comparative genome studies.
    Kathirvel P; Yu WP; Venkatesh B; Lim CC; Lai PS; Yee WC
    Gene; 2008 Nov; 424(1-2):108-14. PubMed ID: 18703124
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Detecting conserved regulatory elements with the model genome of the Japanese puffer fish, Fugu rubripes.
    Aparicio S; Morrison A; Gould A; Gilthorpe J; Chaudhuri C; Rigby P; Krumlauf R; Brenner S
    Proc Natl Acad Sci U S A; 1995 Feb; 92(5):1684-8. PubMed ID: 7878040
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The melanocortin system in Fugu: determination of POMC/AGRP/MCR gene repertoire and synteny, as well as pharmacology and anatomical distribution of the MCRs.
    Klovins J; Haitina T; Fridmanis D; Kilianova Z; Kapa I; Fredriksson R; Gallo-Payet N; Schiƶth HB
    Mol Biol Evol; 2004 Mar; 21(3):563-79. PubMed ID: 14694081
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Multiple gene organization of pufferfish Fugu rubripes tropomyosin isoforms and tissue distribution of their transcripts.
    Toramoto T; Ikeda D; Ochiai Y; Minoshima S; Shimizu N; Watabe S
    Gene; 2004 Apr; 331():41-51. PubMed ID: 15094190
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Prediction of the prototype of the human Toll-like receptor gene family from the pufferfish, Fugu rubripes, genome.
    Oshiumi H; Tsujita T; Shida K; Matsumoto M; Ikeo K; Seya T
    Immunogenetics; 2003 Feb; 54(11):791-800. PubMed ID: 12618912
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The comparative genomic structure and sequence of the surfeit gene homologs in the puffer fish Fugu rubripes and their association with CpG-rich islands.
    Armes N; Gilley J; Fried M
    Genome Res; 1997 Dec; 7(12):1138-52. PubMed ID: 9414319
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Genomic organization and expression of CD8alpha and CD8beta genes in fugu Takifugu rubripes.
    Suetake H; Araki K; Akatsu K; Somamoto T; Dijkstra JM; Yoshiura Y; Kikuchi K; Suzuki Y
    Fish Shellfish Immunol; 2007 Nov; 23(5):1107-18. PubMed ID: 17629710
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Cloning, expression, and characterization of fugu CD4, the first ectothermic animal CD4.
    Suetake H; Araki K; Suzuki Y
    Immunogenetics; 2004 Aug; 56(5):368-74. PubMed ID: 15322779
    [TBL] [Abstract][Full Text] [Related]  

  • 49. One INK4 gene and no ARF at the Fugu equivalent of the human INK4A/ARF/INK4B tumour suppressor locus.
    Gilley J; Fried M
    Oncogene; 2001 Nov; 20(50):7447-52. PubMed ID: 11704876
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Functional characterisation and genomic analysis of an epithelial calcium channel (ECaC) from pufferfish, Fugu rubripes.
    Qiu A; Hogstrand C
    Gene; 2004 Nov; 342(1):113-23. PubMed ID: 15527971
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Convergent loss of an anciently duplicated, functionally divergent RH2 opsin gene in the fugu and Tetraodon pufferfish lineages.
    Neafsey DE; Hartl DL
    Gene; 2005 May; 350(2):161-71. PubMed ID: 15820147
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A novel tumor necrosis factor (TNF) gene present in tandem with theTNF-alpha gene on the same chromosome in teleosts.
    Savan R; Kono T; Igawa D; Sakai M
    Immunogenetics; 2005 Apr; 57(1-2):140-50. PubMed ID: 15759114
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Elephant shark sequence reveals unique insights into the evolutionary history of vertebrate genes: A comparative analysis of the protocadherin cluster.
    Yu WP; Rajasegaran V; Yew K; Loh WL; Tay BH; Amemiya CT; Brenner S; Venkatesh B
    Proc Natl Acad Sci U S A; 2008 Mar; 105(10):3819-24. PubMed ID: 18319338
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Characterization of a hypoxia-response element in the Epo locus of the pufferfish, Takifugu rubripes.
    Kulkarni RP; Tohari S; Ho A; Brenner S; Venkatesh B
    Mar Genomics; 2010 Jun; 3(2):63-70. PubMed ID: 21798198
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Characterization of the transcription factor MTF-1 from the Japanese pufferfish (Fugu rubripes) reveals evolutionary conservation of heavy metal stress response.
    Auf der Maur A; Belser T; Elgar G; Georgiev O; Schaffner W
    Biol Chem; 1999 Feb; 380(2):175-85. PubMed ID: 10195425
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Identification and analysis of two snail genes in the pufferfish (Fugu rubripes) and mapping of human SNA to 20q.
    Smith S; Metcalfe JA; Elgar G
    Gene; 2000 Apr; 247(1-2):119-28. PubMed ID: 10773451
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The genome size evolution of medaka (Oryzias latipes) and fugu (Takifugu rubripes).
    Imai S; Sasaki T; Shimizu A; Asakawa S; Hori H; Shimizu N
    Genes Genet Syst; 2007 Apr; 82(2):135-44. PubMed ID: 17507779
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Characterization of snRNA and snRNA-type genes in the pufferfish Fugu rubripes.
    Myslinski E; Krol A; Carbon P
    Gene; 2004 Apr; 330():149-58. PubMed ID: 15087134
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Highly conserved non-coding sequences are associated with vertebrate development.
    Woolfe A; Goodson M; Goode DK; Snell P; McEwen GK; Vavouri T; Smith SF; North P; Callaway H; Kelly K; Walter K; Abnizova I; Gilks W; Edwards YJ; Cooke JE; Elgar G
    PLoS Biol; 2005 Jan; 3(1):e7. PubMed ID: 15630479
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Characterization of the Fugu rubripes NLK and FN5 genes flanking the NF1 (Neurofibromatosis type 1) gene in the 5' direction and mapping of the human counterparts.
    Kehrer-Sawatzki H; Moschgath E; Maier C; Legius E; Elgar G; Krone W
    Gene; 2000 Jun; 251(1):63-71. PubMed ID: 10863097
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.