BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 12235036)

  • 1. Role of components of the phagocytic NADPH oxidase in oxygen sensing.
    Sanders KA; Sundar KM; He L; Dinger B; Fidone S; Hoidal JR
    J Appl Physiol (1985); 2002 Oct; 93(4):1357-64. PubMed ID: 12235036
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characteristics of carotid body chemosensitivity in NADPH oxidase-deficient mice.
    He L; Chen J; Dinger B; Sanders K; Sundar K; Hoidal J; Fidone S
    Am J Physiol Cell Physiol; 2002 Jan; 282(1):C27-33. PubMed ID: 11742795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. O2 sensing is preserved in mice lacking the gp91 phox subunit of NADPH oxidase.
    Archer SL; Reeve HL; Michelakis E; Puttagunta L; Waite R; Nelson DP; Dinauer MC; Weir EK
    Proc Natl Acad Sci U S A; 1999 Jul; 96(14):7944-9. PubMed ID: 10393927
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SIRPĪ± controls the activity of the phagocyte NADPH oxidase by restricting the expression of gp91(phox).
    van Beek EM; Zarate JA; van Bruggen R; Schornagel K; Tool AT; Matozaki T; Kraal G; Roos D; van den Berg TK
    Cell Rep; 2012 Oct; 2(4):748-55. PubMed ID: 23022485
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New insights into the membrane topology of the phagocyte NADPH oxidase: characterization of an anti-gp91-phox conformational monoclonal antibody.
    Campion Y; Paclet MH; Jesaitis AJ; Marques B; Grichine A; Berthier S; Lenormand JL; Lardy B; Stasia MJ; Morel F
    Biochimie; 2007 Sep; 89(9):1145-58. PubMed ID: 17397983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Induction of gp91-phox, a component of the phagocyte NADPH oxidase, in microglial cells during central nervous system inflammation.
    Green SP; Cairns B; Rae J; Errett-Baroncini C; Hongo JA; Erickson RW; Curnutte JT
    J Cereb Blood Flow Metab; 2001 Apr; 21(4):374-84. PubMed ID: 11323523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of NADPH oxidase in the mechanism of lung neutrophil sequestration and microvessel injury induced by Gram-negative sepsis: studies in p47phox-/- and gp91phox-/- mice.
    Gao XP; Standiford TJ; Rahman A; Newstead M; Holland SM; Dinauer MC; Liu QH; Malik AB
    J Immunol; 2002 Apr; 168(8):3974-82. PubMed ID: 11937554
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescent labeling of the leukocyte NADPH oxidase subunit p47(phox): evidence for amphiphile-induced conformational changes.
    Park HS; Park JW
    Arch Biochem Biophys; 1998 Dec; 360(2):165-72. PubMed ID: 9851827
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NO-mediated regulation of NAD(P)H oxidase by laminar shear stress in human endothelial cells.
    Duerrschmidt N; Stielow C; Muller G; Pagano PJ; Morawietz H
    J Physiol; 2006 Oct; 576(Pt 2):557-67. PubMed ID: 16873416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphoinositide 3-kinase regulates the phosphorylation of NADPH oxidase component p47(phox) by controlling cPKC/PKCdelta but not Akt.
    Yamamori T; Inanami O; Nagahata H; Kuwabara M
    Biochem Biophys Res Commun; 2004 Apr; 316(3):720-30. PubMed ID: 15033459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superoxide release and NADPH oxidase components in mature human phagocytes: correlation between functional capacity and amount of functional proteins.
    Yagisawa M; Yuo A; Yonemaru M; Imajoh-Ohmi S; Kanegasaki S; Yazaki Y; Takaku F
    Biochem Biophys Res Commun; 1996 Nov; 228(2):510-6. PubMed ID: 8920944
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dexamethasone but not indomethacin inhibits human phagocyte nicotinamide adenine dinucleotide phosphate oxidase activity by down-regulating expression of genes encoding oxidase components.
    Condino-Neto A; Whitney C; Newburger PE
    J Immunol; 1998 Nov; 161(9):4960-7. PubMed ID: 9794432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NADPH oxidase activity and cytochrome b558 content of human Epstein-Barr-virus-transformed B lymphocytes correlate with expression of genes encoding components of the oxidase system.
    Condino-Neto A; Newburger PE
    Arch Biochem Biophys; 1998 Dec; 360(2):158-64. PubMed ID: 9851826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NADPH oxidase-derived superoxide anion mediates angiotensin II-enhanced carotid body chemoreceptor sensitivity in heart failure rabbits.
    Li YL; Gao L; Zucker IH; Schultz HD
    Cardiovasc Res; 2007 Aug; 75(3):546-54. PubMed ID: 17499230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role for the first SH3 domain of p67phox in activation of superoxide-producing NADPH oxidases.
    Maehara Y; Miyano K; Sumimoto H
    Biochem Biophys Res Commun; 2009 Feb; 379(2):589-93. PubMed ID: 19116138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of NOX2 and "novel oxidases" in airway chemoreceptor O(2) sensing.
    Cutz E; Pan J; Yeger H
    Adv Exp Med Biol; 2009; 648():427-38. PubMed ID: 19536508
    [TBL] [Abstract][Full Text] [Related]  

  • 17. p47(phox) PX domain of NADPH oxidase targets cell membrane via moesin-mediated association with the actin cytoskeleton.
    Zhan Y; He D; Newburger PE; Zhou GW
    J Cell Biochem; 2004 Jul; 92(4):795-809. PubMed ID: 15211576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A point mutation in gp91-phox of cytochrome b558 of the human NADPH oxidase leading to defective translocation of the cytosolic proteins p47-phox and p67-phox.
    Leusen JH; de Boer M; Bolscher BG; Hilarius PM; Weening RS; Ochs HD; Roos D; Verhoeven AJ
    J Clin Invest; 1994 May; 93(5):2120-6. PubMed ID: 8182143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pervanadate activates NADPH oxidase via protein kinase C-independent phosphorylation of p47-phox.
    Yaname H; Fukunaga T; Nigorikawa K; Okamura N; Ishibashi S
    Arch Biochem Biophys; 1999 Jan; 361(1):1-6. PubMed ID: 9882422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Critical role of the NAD(P)H oxidase subunit p47phox for left ventricular remodeling/dysfunction and survival after myocardial infarction.
    Doerries C; Grote K; Hilfiker-Kleiner D; Luchtefeld M; Schaefer A; Holland SM; Sorrentino S; Manes C; Schieffer B; Drexler H; Landmesser U
    Circ Res; 2007 Mar; 100(6):894-903. PubMed ID: 17332431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.