These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 12235056)

  • 41. Pulmonary edema as a cause of surfactant deficiency.
    Said SI; Banerjee CM; Harlan WR; Avery ME
    Jpn Heart J; 1967 Nov; 8(6):742-3. PubMed ID: 5300579
    [No Abstract]   [Full Text] [Related]  

  • 42. The formation and removal of oedema fluid in the lung.
    COORAY GH
    Ceylon Med J; 1952 Oct; 1(2):145-9. PubMed ID: 13033055
    [No Abstract]   [Full Text] [Related]  

  • 43. [Pulmonary fluid-and-air cavity of difficult interpretation].
    BERTOLLI M
    Minerva Pediatr; 1952 Dec; 4(23):1018-9. PubMed ID: 13046302
    [No Abstract]   [Full Text] [Related]  

  • 44. [On the mechanism of transport of finely subdivided material from the alveolar through the pulmonary interstrial space].
    Recenti Prog Med; 1960 Mar; 28():267-70. PubMed ID: 14447979
    [No Abstract]   [Full Text] [Related]  

  • 45. Critical Examination of the Evidence for and against the Presence of Epithelium in the Air Cells of the Human Lung.
    Rainey G
    Br Foreign Med Chir Rev; 1855 Oct; 16(32):491-500. PubMed ID: 30163832
    [No Abstract]   [Full Text] [Related]  

  • 46. Air-fluid level in the right lung.
    Bhardwaj B; Bhardwaj H
    Lung India; 2014 Apr; 31(2):179-81. PubMed ID: 24778488
    [No Abstract]   [Full Text] [Related]  

  • 47. The mechanism of fluid absorption from tissue spaces.
    Scott FH
    J Physiol; 1916 Feb; 50(3):157-67. PubMed ID: 16993333
    [No Abstract]   [Full Text] [Related]  

  • 48. Proteolytic Activation of the Epithelial Sodium Channel (ENaC): Its Mechanisms and Implications.
    Aufy M; Hussein AM; Stojanovic T; Studenik CR; Kotob MH
    Int J Mol Sci; 2023 Dec; 24(24):. PubMed ID: 38139392
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Glucocorticoid Treatment in Acute Respiratory Distress Syndrome: An Overview on Mechanistic Insights and Clinical Benefit.
    Zhang J; Ge P; Liu J; Luo Y; Guo H; Zhang G; Xu C; Chen H
    Int J Mol Sci; 2023 Jul; 24(15):. PubMed ID: 37569514
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Chest dual-energy CT to assess the effects of steroids on lung function in severe COVID-19 patients.
    Perchiazzi G; Larina A; Hansen T; Frithiof R; Hultström M; Lipcsey M; Pellegrini M
    Crit Care; 2022 Oct; 26(1):328. PubMed ID: 36284360
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Hypoxia Aggravates Inhibition of Alveolar Epithelial Na-Transport by Lipopolysaccharide-Stimulation of Alveolar Macrophages.
    Baloglu E; Velineni K; Ermis-Kaya E; Mairbäurl H
    Int J Mol Sci; 2022 Jul; 23(15):. PubMed ID: 35955448
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Pulmonary Edema in COVID-19 Patients: Mechanisms and Treatment Potential.
    Cui X; Chen W; Zhou H; Gong Y; Zhu B; Lv X; Guo H; Duan J; Zhou J; Marcon E; Ma H
    Front Pharmacol; 2021; 12():664349. PubMed ID: 34163357
    [TBL] [Abstract][Full Text] [Related]  

  • 53. SARS-CoV-2 may hijack GPCR signaling pathways to dysregulate lung ion and fluid transport.
    Abdel Hameid R; Cormet-Boyaka E; Kuebler WM; Uddin M; Berdiev BK
    Am J Physiol Lung Cell Mol Physiol; 2021 Mar; 320(3):L430-L435. PubMed ID: 33434105
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The Hen or the Egg: Impaired Alveolar Oxygen Diffusion and Acute High-altitude Illness?
    Mairbäurl H; Dehnert C; Macholz F; Dankl D; Sareban M; Berger MM
    Int J Mol Sci; 2019 Aug; 20(17):. PubMed ID: 31443549
    [TBL] [Abstract][Full Text] [Related]  

  • 55. miR-206 regulates alveolar type II epithelial cell Cx43 expression in sepsis-induced acute lung injury.
    Zhou J; Fu Y; Liu K; Hou L; Zhang W
    Exp Ther Med; 2019 Jul; 18(1):296-304. PubMed ID: 31258665
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Specialized Pro-resolving Mediators Regulate Alveolar Fluid Clearance during Acute Respiratory Distress Syndrome.
    Wang Q; Yan SF; Hao Y; Jin SW
    Chin Med J (Engl); 2018 Apr; 131(8):982-989. PubMed ID: 29664060
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Ion channels of the lung and their role in disease pathogenesis.
    Bartoszewski R; Matalon S; Collawn JF
    Am J Physiol Lung Cell Mol Physiol; 2017 Nov; 313(5):L859-L872. PubMed ID: 29025712
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Systematic review and meta-analysis of nasal potential difference in hypoxia-induced lung injury.
    Su Z; Zhu L; Wu J; Zhao R; Ji HL
    Sci Rep; 2016 Aug; 6():30780. PubMed ID: 27488696
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Knockout Mice Reveal a Major Role for Alveolar Epithelial Type I Cells in Alveolar Fluid Clearance.
    Flodby P; Kim YH; Beard LL; Gao D; Ji Y; Kage H; Liebler JM; Minoo P; Kim KJ; Borok Z; Crandall ED
    Am J Respir Cell Mol Biol; 2016 Sep; 55(3):395-406. PubMed ID: 27064541
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Restrictive Fluid Resuscitation Leads to Better Oxygenation than Non-Restrictive Fluid Resuscitation in Piglets with Pulmonary or Extrapulmonary Acute Respiratory Distress Syndrome.
    Ye S; Li Q; Yuan S; Shu H; Yuan Y
    Med Sci Monit; 2015 Jul; 21():2008-20. PubMed ID: 26166324
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.