These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 12235196)

  • 21. Comparative morphology of the amphibian opercularis system: I. General design features and functional interpretation.
    Hetherington TE; Jaslow AP; Lombard RE
    J Morphol; 1986 Oct; 190(1):43-61. PubMed ID: 3783718
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The biomechanical effects of stapes replacement by prostheses on the tympano-ossicular chain.
    Gentil F; Garbe C; Parente M; Martins P; Santos C; Almeida E; Jorge RN
    Int J Numer Method Biomed Eng; 2014 Dec; 30(12):1409-20. PubMed ID: 25045115
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Effect of fixation of superior mallear ligament and anterior mallear ligament on the middle ear transfer function-finite element modeling].
    Huang H; Wang J
    Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2016 Dec; 30(24):1935-1939. PubMed ID: 29798268
    [No Abstract]   [Full Text] [Related]  

  • 24. Contribution of the flexible incudo-malleal joint to middle-ear sound transmission under static pressure loads.
    Warnholtz B; Schär M; Sackmann B; Lauxmann M; Chatzimichalis M; Prochazka L; Dobrev I; Huber AM; Sim JH
    Hear Res; 2021 Jul; 406():108272. PubMed ID: 34038827
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Middle ear structure in the chinchilla: a quantitative study.
    Vrettakos PA; Dear SP; Saunders JC
    Am J Otolaryngol; 1988; 9(2):58-67. PubMed ID: 3400821
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modeling sound transmission of human middle ear and its clinical applications using finite element analysis.
    Chen SI; Lee MH; Yao CM; Chen PR; Chou YF; Liu TC; Song YL; Lee CF
    Kaohsiung J Med Sci; 2013 Mar; 29(3):133-9. PubMed ID: 23465416
    [TBL] [Abstract][Full Text] [Related]  

  • 27. STRUCTURE AND FUNCTION OF THE MIDDLE EAR APPARATUS OF THE AQUATIC FROG, XENOPUS LAEVIS.
    Mason M; Wang M; Narins P
    Proc Inst Acoust; 2009 Jan; 31():13-21. PubMed ID: 20953303
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Measurements of ossicular vibrations in the middle ear.
    Schön F; Müller J
    Audiol Neurootol; 1999; 4(3-4):142-9. PubMed ID: 10187922
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A 3D-printed functioning anatomical human middle ear model.
    Kuru I; Maier H; Müller M; Lenarz T; Lueth TC
    Hear Res; 2016 Oct; 340():204-213. PubMed ID: 26772730
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Middle ear transmission in the grass frog, Rana temporaria.
    Jørgensen MB; Kanneworff M
    J Comp Physiol A; 1998 Jan; 182(1):59-64. PubMed ID: 9447714
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Discovery of the earliest-known tetrapod stapes.
    Clack JA
    Nature; 1989 Nov; 342(6248):425-7. PubMed ID: 2586610
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The influence of the mechanical behaviour of the middle ear ligaments: a finite element analysis.
    Gentil F; Parente M; Martins P; Garbe C; Jorge RN; Ferreira A; Tavares JM
    Proc Inst Mech Eng H; 2011 Jan; 225(1):68-76. PubMed ID: 21381489
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanics of type IV tympanoplasty: experimental findings and surgical implications.
    Merchant SN; Ravicz ME; Rosowski JJ
    Ann Otol Rhinol Laryngol; 1997 Jan; 106(1):49-60. PubMed ID: 9006362
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Functional model of the middle ear ossicles].
    Satoda T; Shimoe S; Makihira S; Tamamoto M; Matsumoto A; Hara K; Noso M; Niitani Y; Sugiyama M; Takemoto T; Murayama T; Amano H; Nikawa H
    Kaibogaku Zasshi; 2009 Jun; 84(2):41-6. PubMed ID: 19562938
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanical Energy Dissipation Through the Ossicular Chain and Inner Ear Using Laser Doppler Vibrometer Measurement of Round Window Velocity.
    Ryan M; Lally J; Adams JK; Higgins S; Ahmed M; Aden J; Esquivel C; Spear SA
    Otol Neurotol; 2020 Mar; 41(3):e387-e391. PubMed ID: 31821262
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Middle-ear mechanics in the CF-bat Rhinolophus ferrumequinum.
    Wilson JP; Bruns V
    Hear Res; 1983 Apr; 10(1):1-13. PubMed ID: 6841274
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ossicular motion related to middle ear transmission delay in gerbil.
    de La Rochefoucauld O; Kachroo P; Olson ES
    Hear Res; 2010 Dec; 270(1-2):158-72. PubMed ID: 20696229
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effect of single-ossicle ear flexibility and eardrum cone orientation on quasi-static behavior of the chicken middle ear.
    Muyshondt PGG; Aerts P; Dirckx JJJ
    Hear Res; 2019 Jul; 378():13-22. PubMed ID: 30482533
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metamorphic development of the bronchial columella of the larval bullfrog (Rana catesbeiana).
    Horowitz SS; Chapman JA; Kaya U; Simmons AM
    Hear Res; 2001 Apr; 154(1-2):12-25. PubMed ID: 11423211
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stapes displacement and intracochlear pressure in response to very high level, low frequency sounds.
    Greene NT; Jenkins HA; Tollin DJ; Easter JR
    Hear Res; 2017 May; 348():16-30. PubMed ID: 28189837
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.