These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 12235819)

  • 1. [Functional imaging studies of attention].
    Kawashima R
    Rinsho Shinkeigaku; 2001 Dec; 41(12):1137-9. PubMed ID: 12235819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the neural basis of focused and divided attention.
    Nebel K; Wiese H; Stude P; de Greiff A; Diener HC; Keidel M
    Brain Res Cogn Brain Res; 2005 Dec; 25(3):760-76. PubMed ID: 16337110
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural networks of response shifting: influence of task speed and stimulus material.
    Loose R; Kaufmann C; Tucha O; Auer DP; Lange KW
    Brain Res; 2006 May; 1090(1):146-55. PubMed ID: 16643867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Males and females differ in brain activation during cognitive tasks.
    Bell EC; Willson MC; Wilman AH; Dave S; Silverstone PH
    Neuroimage; 2006 Apr; 30(2):529-38. PubMed ID: 16260156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activation patterns in visual cortex reveal receptive field size-dependent attentional modulation.
    Rijpkema M; van Aalderen SI; Schwarzbach JV; Verstraten FA
    Brain Res; 2008 Jan; 1189():90-6. PubMed ID: 18062939
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cognitive control of attention in the human brain: insights from orienting attention to mental representations.
    Lepsien J; Nobre AC
    Brain Res; 2006 Aug; 1105(1):20-31. PubMed ID: 16729979
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Right hemisphere dominance for auditory attention and its modulation by eye position: an event related fMRI study.
    Petit L; Simon G; Joliot M; Andersson F; Bertin T; Zago L; Mellet E; Tzourio-Mazoyer N
    Restor Neurol Neurosci; 2007; 25(3-4):211-25. PubMed ID: 17943000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. fMRI evidence of brain reorganization during attention and memory tasks in multiple sclerosis.
    Mainero C; Caramia F; Pozzilli C; Pisani A; Pestalozza I; Borriello G; Bozzao L; Pantano P
    Neuroimage; 2004 Mar; 21(3):858-67. PubMed ID: 15006652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Attentional systems in target and distractor processing: a combined ERP and fMRI study.
    Bledowski C; Prvulovic D; Goebel R; Zanella FE; Linden DE
    Neuroimage; 2004 Jun; 22(2):530-40. PubMed ID: 15193581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Orienting and maintenance of spatial attention in audition and vision: an event-related brain potential study.
    Salmi J; Rinne T; Degerman A; Alho K
    Eur J Neurosci; 2007 Jun; 25(12):3725-33. PubMed ID: 17610592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial attention can modulate audiovisual integration at multiple cortical and subcortical sites.
    Fairhall SL; Macaluso E
    Eur J Neurosci; 2009 Mar; 29(6):1247-57. PubMed ID: 19302160
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Attentional responses to unattended stimuli in human parietal cortex.
    Vandenberghe R; Geeraerts S; Molenberghs P; Lafosse C; Vandenbulcke M; Peeters K; Peeters R; Van Hecke P; Orban GA
    Brain; 2005 Dec; 128(Pt 12):2843-57. PubMed ID: 15857928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of allocation of visuo-spatial attention to visual stimuli triggering unilateral arm abduction on anticipatory postural control.
    Tomita H; Fujiwara K
    Clin Neurophysiol; 2008 Sep; 119(9):2086-97. PubMed ID: 18620907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atypical hemispheric dominance for attention: functional MRI topography.
    Flöel A; Jansen A; Deppe M; Kanowski M; Konrad C; Sommer J; Knecht S
    J Cereb Blood Flow Metab; 2005 Sep; 25(9):1197-208. PubMed ID: 15815582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional MRI mapping of brain activation during visually guided saccades and antisaccades: cortical and subcortical networks.
    Matsuda T; Matsuura M; Ohkubo T; Ohkubo H; Matsushima E; Inoue K; Taira M; Kojima T
    Psychiatry Res; 2004 Jul; 131(2):147-55. PubMed ID: 15313521
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Attention to somatosensory events is directly linked to the preparation for action.
    Galazky I; Schütze H; Noesselt T; Hopf JM; Heinze HJ; Schoenfeld MA
    J Neurol Sci; 2009 Apr; 279(1-2):93-8. PubMed ID: 19167729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional parcellation of attentional control regions of the brain.
    Woldorff MG; Hazlett CJ; Fichtenholtz HM; Weissman DH; Dale AM; Song AW
    J Cogn Neurosci; 2004; 16(1):149-65. PubMed ID: 15006044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brain reorganization during attention and memory tasks in multiple sclerosis: insights from functional MRI studies.
    Mainero C; Pantano P; Caramia F; Pozzilli C
    J Neurol Sci; 2006 Jun; 245(1-2):93-8. PubMed ID: 16626753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatiotemporal overlap between brain activation related to saccade preparation and attentional orienting.
    van der Lubbe RH; Neggers SF; Verleger R; Kenemans JL
    Brain Res; 2006 Feb; 1072(1):133-52. PubMed ID: 16427618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ERP and fMRI correlates of endogenous and exogenous focusing of visual-spatial attention.
    Natale E; Marzi CA; Girelli M; Pavone EF; Pollmann S
    Eur J Neurosci; 2006 May; 23(9):2511-21. PubMed ID: 16706858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.