These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 12236447)

  • 1. Web-based telerehabilitation for the upper extremity after stroke.
    Reinkensmeyer DJ; Pang CT; Nessler JA; Painter CC
    IEEE Trans Neural Syst Rehabil Eng; 2002 Jun; 10(2):102-8. PubMed ID: 12236447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automating arm movement training following severe stroke: functional exercises with quantitative feedback in a gravity-reduced environment.
    Sanchez RJ; Liu J; Rao S; Shah P; Smith R; Rahman T; Cramer SC; Bobrow JE; Reinkensmeyer DJ
    IEEE Trans Neural Syst Rehabil Eng; 2006 Sep; 14(3):378-89. PubMed ID: 17009498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. HoMEcare aRm rehabiLItatioN (MERLIN): telerehabilitation using an unactuated device based on serious games improves the upper limb function in chronic stroke.
    Rozevink SG; van der Sluis CK; Garzo A; Keller T; Hijmans JM
    J Neuroeng Rehabil; 2021 Mar; 18(1):48. PubMed ID: 33726801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Telerehabilitation using a virtual environment improves upper extremity function in patients with stroke.
    Holden MK; Dyar TA; Dayan-Cimadoro L
    IEEE Trans Neural Syst Rehabil Eng; 2007 Mar; 15(1):36-42. PubMed ID: 17436874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Rutgers Arm, a rehabilitation system in virtual reality: a pilot study.
    Kuttuva M; Boian R; Merians A; Burdea G; Bouzit M; Lewis J; Fensterheim D
    Cyberpsychol Behav; 2006 Apr; 9(2):148-51. PubMed ID: 16640468
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental results using force-feedback cueing in robot-assisted stroke therapy.
    Johnson MJ; Van der Loos HF; Burgar CG; Shor P; Leifer LJ
    IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):335-48. PubMed ID: 16200757
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and control of RUPERT: a device for robotic upper extremity repetitive therapy.
    Sugar TG; He J; Koeneman EJ; Koeneman JB; Herman R; Huang H; Schultz RS; Herring DE; Wanberg J; Balasubramanian S; Swenson P; Ward JA
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):336-46. PubMed ID: 17894266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards extended virtual presence of the therapist in stroke rehabilitation.
    Jung HT; Takahashi T; Choe YK; Baird J; Foster T; Grupen RA
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650345. PubMed ID: 24187164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of computer games for assessment and training in post-stroke arm telerehabilitation.
    Rodriguez-de-Pablo C; Perry JC; Cavallaro FI; Zabaleta H; Keller T
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4571-4. PubMed ID: 23366945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of robot-aided bilateral force-induced isokinetic arm training combined with conventional rehabilitation on arm motor function in patients with chronic stroke.
    Chang JJ; Tung WL; Wu WL; Huang MH; Su FC
    Arch Phys Med Rehabil; 2007 Oct; 88(10):1332-8. PubMed ID: 17908578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A strategy for computer-assisted mental practice in stroke rehabilitation.
    Gaggioli A; Meneghini A; Morganti F; Alcaniz M; Riva G
    Neurorehabil Neural Repair; 2006 Dec; 20(4):503-7. PubMed ID: 17082506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The ARAMIS project: a concept robot and technical design.
    Colizzi L; Lidonnici A; Pignolo L
    J Rehabil Med; 2009 Nov; 41(12):1011-101. PubMed ID: 19841834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visual feedback distortion in a robotic environment for hand rehabilitation.
    Brewer BR; Klatzky R; Matsuoka Y
    Brain Res Bull; 2008 Apr; 75(6):804-13. PubMed ID: 18394527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of finger tracking versus simple movement training via telerehabilitation to alter hand function and cortical reorganization after stroke.
    Carey JR; Durfee WK; Bhatt E; Nagpal A; Weinstein SA; Anderson KM; Lewis SM
    Neurorehabil Neural Repair; 2007; 21(3):216-32. PubMed ID: 17351083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Virtual reality and a haptic master-slave set-up in post-stroke upper-limb rehabilitation.
    Houtsma JA; Van Houten FJ
    Proc Inst Mech Eng H; 2006 Aug; 220(6):715-8. PubMed ID: 16961191
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Jerusalem TeleRehabilitation System, a new low-cost, haptic rehabilitation approach.
    Sugarman H; Dayan E; Weisel-Eichler A; Tiran J
    Cyberpsychol Behav; 2006 Apr; 9(2):178-82. PubMed ID: 16640475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robot-based hand motor therapy after stroke.
    Takahashi CD; Der-Yeghiaian L; Le V; Motiwala RR; Cramer SC
    Brain; 2008 Feb; 131(Pt 2):425-37. PubMed ID: 18156154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a powered mobile module for the ArmAssist home-based telerehabilitation platform.
    Jung JH; Valencia DB; Rodríguez-de-Pablo C; Keller T; Perry JC
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650424. PubMed ID: 24187242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Telerehabilitation and emerging virtual reality approaches to stroke rehabilitation.
    Putrino D
    Curr Opin Neurol; 2014 Dec; 27(6):631-6. PubMed ID: 25333603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A virtual-reality-based telerehabilitation system with force feedback.
    Popescu VG; Burdea GC; Bouzit M; Hentz VR
    IEEE Trans Inf Technol Biomed; 2000 Mar; 4(1):45-51. PubMed ID: 10761773
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.