These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 12236531)

  • 1. Column selectivity from the perspective of the solvation parameter model.
    Poole CF; Poole SK
    J Chromatogr A; 2002 Aug; 965(1-2):263-99. PubMed ID: 12236531
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selectivity equivalence of poly(ethylene glycol) stationary phases for gas chromatography.
    Poole CF; Li Q; Kiridena W; Koziol WW
    J Chromatogr A; 2000 Nov; 898(2):211-26. PubMed ID: 11117419
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The chemical interpretation and practice of linear solvation energy relationships in chromatography.
    Vitha M; Carr PW
    J Chromatogr A; 2006 Sep; 1126(1-2):143-94. PubMed ID: 16889784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A system map for the ionic liquid stationary phase 1,12-di(tripropylphosphonium)dodecane bis(trifluoromethylsulfonyl)imide trifluoromethanesulfonate for gas chromatography.
    Lenca N; Poole CF
    J Chromatogr A; 2018 Jul; 1559():164-169. PubMed ID: 28619588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Retention characteristics of an immobilized artificial membrane column in reversed-phase liquid chromatography.
    Lepont C; Poole CF
    J Chromatogr A; 2002 Feb; 946(1-2):107-24. PubMed ID: 11873960
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solvation parameter model: Tutorial on its application to separation systems for neutral compounds.
    Poole CF
    J Chromatogr A; 2021 May; 1645():462108. PubMed ID: 33857674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Retention characteristics of porous graphitic carbon in reversed-phase liquid chromatography with methanol-water mobile phases.
    Lepont C; Gunatillaka AD; Poole CF
    Analyst; 2001 Aug; 126(8):1318-25. PubMed ID: 11534599
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selectivity assessment of popular stationary phases for open-tubular column gas chromatography.
    Poole CF; Li Q; Kiridena W; Koziol WW
    J Chromatogr A; 2001 Mar; 912(1):107-17. PubMed ID: 11307973
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of interactions in supercritical fluids and supercritical fluid chromatography by solvatochromic linear solvation energy relationships.
    Weckwerth JD; Carr PW
    Anal Chem; 1998 Apr; 70(7):1404-11. PubMed ID: 21644735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A system map for the ionic liquid stationary phase 1,12-di(tripropylphosphonium)dodecane bis(trifluoromethylsulfonyl)imide for gas chromatography.
    Lenca N; Poole CF
    J Chromatogr A; 2017 Nov; 1525():138-144. PubMed ID: 29030038
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gas chromatography system constant database over an extended temperature range for nine open-tubular columns.
    Poole CF
    J Chromatogr A; 2019 Apr; 1590():130-145. PubMed ID: 30770145
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of stationary phases by a linear solvation energy relationship utilizing supercritical fluid chromatography.
    Mitchell CR; Benz NJ; Zhang S
    J Sep Sci; 2010 Oct; 33(19):3060-7. PubMed ID: 20730839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation and evaluation of a novel bonded imidazolium ionic liquid as stationary phase for gas chromatography.
    Dai JL; Zhao LH; Shi JH
    J Sep Sci; 2017 Jul; 40(13):2769-2778. PubMed ID: 28481044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stationary phases for packed-column supercritical fluid chromatography.
    Poole CF
    J Chromatogr A; 2012 Aug; 1250():157-71. PubMed ID: 22209357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wayne State University experimental descriptor database for use with the solvation parameter model.
    Poole CF
    J Chromatogr A; 2020 Apr; 1617():460841. PubMed ID: 31954542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of solute partition behavior with room-temperature ionic liquid based micellar gas-liquid chromatography stationary phases using the pseudophase model.
    Lantz AW; Pino V; Anderson JL; Armstrong DW
    J Chromatogr A; 2006 May; 1115(1-2):217-24. PubMed ID: 16569411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of a series of phenyl-type stationary phases in supercritical fluid chromatography with the linear solvation energy relationship model and its application to the separation of phenolic compounds.
    Jiang D; Ke Y; Cai J; Zhang H; Fu Q; Jin Y; Liang X
    J Chromatogr A; 2020 Mar; 1614():460700. PubMed ID: 31740031
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterisation of stationary phases in subcritical fluid chromatography with the solvation parameter model. III. Polar stationary phases.
    West C; Lesellier E
    J Chromatogr A; 2006 Mar; 1110(1-2):200-13. PubMed ID: 16487536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selectivity equivalence of two poly(methylphenylsiloxane) open-tubular columns prepared with different deactivation techniques for gas chromatography.
    Atapattu SN; Poole CF
    J Chromatogr A; 2008 Mar; 1185(2):305-9. PubMed ID: 18313065
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An attempt to estimate ionic interactions with phenyl and pentafluorophenyl stationary phases in supercritical fluid chromatography.
    West C; Lemasson E; Khater S; Lesellier E
    J Chromatogr A; 2015 Sep; 1412():126-38. PubMed ID: 26278356
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.