These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 12236553)

  • 1. Bench-scale visualization of DNAPL remediation processes in analog heterogeneous aquifers: surfactant floods and in situ oxidation using permanganate.
    Conrad SH; Glass RJ; Peplinski WJ
    J Contam Hydrol; 2002 Sep; 58(1-2):13-49. PubMed ID: 12236553
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combination of surfactant solubilization with permanganate oxidation for DNAPL remediation.
    Li Z; Hanlie H
    Water Res; 2008 Feb; 42(3):605-14. PubMed ID: 17826816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNAPL remediation with in situ chemical oxidation using potassium permanganate. II. Increasing removal efficiency by dissolving Mn oxide precipitates.
    Li XD; Schwartz FW
    J Contam Hydrol; 2004 Feb; 68(3-4):269-87. PubMed ID: 14734249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intermediate-scale 2D experimental investigation of in situ chemical oxidation using potassium permanganate for remediation of complex DNAPL source zones.
    Heiderscheidt JL; Siegrist RL; Illangasekare TH
    J Contam Hydrol; 2008 Nov; 102(1-2):3-16. PubMed ID: 18774622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The significance of heterogeneity on mass flux from DNAPL source zones: an experimental investigation.
    Page JW; Soga K; Illangasekare T
    J Contam Hydrol; 2007 Dec; 94(3-4):215-34. PubMed ID: 17706832
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mass removal of chlorinated ethenes from rough-walled fractures using permanganate.
    Tunnicliffe BS; Thomson NR
    J Contam Hydrol; 2004 Nov; 75(1-2):91-114. PubMed ID: 15385100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laboratory-scale in situ chemical oxidation of a perchloroethylene pool using permanganate.
    MacKinnon LK; Thomson NR
    J Contam Hydrol; 2002 May; 56(1-2):49-74. PubMed ID: 12076023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of trichloroethene recovery processes in heterogeneous aquifer cells flushed with biodegradable surfactants.
    Suchomel EJ; Ramsburg CA; Pennell KD
    J Contam Hydrol; 2007 Dec; 94(3-4):195-214. PubMed ID: 17628205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mobilization and entry of DNAPL pools into finer sand media by cosolvents: two-dimensional chamber studies.
    Van Valkenburg ME; Annable MD
    J Contam Hydrol; 2002 Dec; 59(3-4):211-30. PubMed ID: 12487414
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mobilization of small DNAPL pools formed by capillary entrapment.
    Fu X; Imhoff PT
    J Contam Hydrol; 2002 May; 56(1-2):137-58. PubMed ID: 12076021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of DNAPL contamination from the saturated zone by the combined effect of vertical upward flushing and density reduction.
    Hofstee C; Gutiérrez Ziegler C; Trötschler O; Braun J
    J Contam Hydrol; 2003 Dec; 67(1-4):61-78. PubMed ID: 14607470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. To postpone the precipitation of manganese oxides in the degradation of tetrachloroethylene by controlling the permanganate concentration.
    Yang W; Qiu Z; Zhao Z; Lu S; Sui Q; Gu X
    Environ Technol; 2017 Jan; 38(1):34-41. PubMed ID: 27149929
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Density-modified displacement for DNAPL source zone remediation: density conversion and recovery in heterogeneous aquifer cells.
    Ramsburg CA; Pennell KD
    Environ Sci Technol; 2002 Jul; 36(14):3176-87. PubMed ID: 12141501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Refinement of the density-modified displacement method for efficient treatment of tetrachloroethene source zones.
    Ramsburg CA; Pennell KD; Kibbey TC; Hayes KF
    J Contam Hydrol; 2004 Oct; 74(1-4):105-31. PubMed ID: 15358489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surfactant-enhanced in-situ oxidation of DNAPL source zone: Experiments and numerical modeling.
    Demiray Z; Akyol NH; Akyol G; Copty NK
    J Contam Hydrol; 2023 Sep; 258():104233. PubMed ID: 37625208
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In-situ oxidation of trichloroethene by permanganate: effects on porous medium hydraulic properties.
    Schroth MH; Oostrom M; Wietsma TW; Istok JD
    J Contam Hydrol; 2001 Jul; 50(1-2):79-98. PubMed ID: 11475162
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving the treatment of non-aqueous phase TCE in low permeability zones with permanganate.
    Chokejaroenrat C; Comfort S; Sakulthaew C; Dvorak B
    J Hazard Mater; 2014 Mar; 268():177-84. PubMed ID: 24491441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of surfactant-induced wettability alterations on DNAPL invasion in quartz and iron oxide-coated sand systems.
    Molnar IL; O'Carroll DM; Gerhard JI
    J Contam Hydrol; 2011 Jan; 119(1-4):1-12. PubMed ID: 20880604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A laboratory study of surfactant flushing of DNAPL in the presence of macroemulsion.
    Gupta DK; Mohanty KK
    Environ Sci Technol; 2001 Jul; 35(13):2836-43. PubMed ID: 11452618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pore-scale investigation of surfactant-enhanced DNAPL mobilization and solubilization.
    Wang Z; Yang Z; Chen YF
    Chemosphere; 2023 Nov; 341():140071. PubMed ID: 37673186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.